Nota de lanzamiento

Fecha: Junio 2021

Versión : midas Gen 2021 (v2.1) & Design+2021(v2.1)

Diseño de Estructuras Generales

Sistema integrado para el diseño de edificaciones y estructuras generales

Actualizaciones & Mejoras

• midas Gen

1) Mejoras en los factores de escala de rigidez para secciones	4
2) Mejoras en el chequeo a cortante de nudos	11
3) Valor del periodo T1 definido por el usuario para el diseño a cortante según EC8:04 & NTC2018	13
4) Nuevo método para el cálculo del momento de diseño según NTC2018	15
5) Adición del anexo de Suecia para el Eurocódigo	17

• midas Design+

1) Dimensiones definidas por el usuario para placa colaborante de	20
acero en módulo de vigas compuestas	

Adición de factores de escala para elementos

- La rigidez se puede definir por miembros y no solamente a secciones.

Properties> Section> Scale Factor> Element Stiffness Scale Factor

El factor de escala por elemento **Element Stiffness Scale Factor (E.S.S.F.)** tiene prioridad sobre el factor de escala por sección **Section Stiffness Scale Factor (S.S.S.F.)**

Es posible definir factores de escala para secciones de manera colectiva, para cada tipo de miembro (viga, columna, muro)

	View	Structure N	ode/Element	Properties	Boundary	Load	Analysis	Results	Pushover	Design	Seismic Evaluation	Query Tools		
Global	Load Case *	Hinge Properties *	Generate Se Set Load Ca Check Secti	ection Effecti ase for Sectio ion Effective 1	ive Stiffness in Effective Stiffn Stiffness	ess Perf Analy	orm /sis *	Reactions ▼ Deformations ▼ Forces ▼	9 Stresses ▼ † Hinge Stat	tus Result	Pushover Curve	Pushover Story graph *	Image: Properties Image: Pushover Hinge Image: Pushover Hinge Image: Pushover Hinge Result ★	Pushover Text
Contro	Load Ca	se Properties		Effective Stiff	fness	Perf	orm				Pushover Results		Pushover Tables	Text

Pushover > Effective Stiffness > Generate Section Effective

Es posible el cálculo automático de la relación de rigidez efectiva de columnas de acuerdo con la carga axial producida por cargas gravitacionales

View Structure Node/Element Properties Boundary Image: Structure Image: Structure Image: Structure Image: Structure Image: Structure Global Control Load Case Finge: Properties Image: Structure Image: Structure Control Load Case Properties Image: Structure	Load Ana Perform Analysis * Perform	Alysis Results Pushover Design Seismic Evaluation Query Tools Reactions × Stresses × Pushover Curve Pushover Story graph × Pushover Hinge Properties Pushover Hinge Status Result Pushover Graph Pushover Result of Fiber Section Pushover Hinge Result × Pushover Result Graph × Pushover Result Text
Set Load Case for Section Effective Stiffi	n X	Paso 1: Definir el factor de escala de cargas gravitacionales para calcular la fuerza axial de la columna
Load Case : DL Scale Factor : 0,5 Loadcase Scale Ac DL 1 LL 0,5 Mod	 Id dify	6.4.1.2 Stiffness Component stiffnesses shall be calculated according to accepted principles of mechanics. Sources of flexibility shall include flexure, shear, axial load, and reinforcement slip from adjacent connections and components. Stiffnesses should be selected to represent the stress and deformation levels to which the
Del OK Ca	ncel	components will be subjected, considering volume change effects (temperature and shrinkage) <u>combined</u> with design earthquake and gravity load effects.

Código de referencia : 6.4.1.2 - FEMA273

Paso 2 : Seleccionar el método de cálculo

Paso 3 : Al seleccionar "definido por el usuario", ingresar la relación de fuerza axial y el factor de escala de rigidez a momento en cada punto

View Structure Node/Element Properties	Boundary Load Analysis Results	Pushover Design	Seismic Evalu	uation Query Tools		
obal ttrol × Load Case ×	tiffness fective Stiffness Perform Analysis ~ Free Forces ~	• ⁰ <mark>∕1</mark> Stresses • ns • ‡≧ Hinge Status Result	Pushover Co Pushover G Pushover Si	urve 👘 Pushover Story graph raph 🖉 Pushover Result of Fi nart Graph ~	ber Section Pushover Hinge	Properties Result =
Check Effective Stiffness of Column Calculation Method Calculated by : KISTEC2019 Calculated by User Defined			Pushover Resi	itting	Pusnover Tab	X
Component	Table 10-5. Effective Stiffne Flexural Rigidity	Shear Ri	ttiffnessSca (leff)	1 st point	2 nd point	_
eams—nonprestressed ^a eams—prestressed ^a olumns with compressio n caused by design	$0.3E_cI_g$ E_cI_g $0.7E_cI_g$	0.4 <i>E</i> , 0.4 <i>E</i> , 0.4 <i>E</i> ,	Bending S 00			
ravity loads $\ge 0.5A_g f_c'$ olumns with compression caused by design ravity loads $\le 0.1A_g f_c'$ of with tension	$0.3E_cI_g$	$0.4E_{e}$	2 Sec. 23	0.0 Axial Forc	e Ratio 1.0	
at slabs—nonprestressed	Refer to Section 10.4.4.2	$0.4E_{c}$		Axial Force Ratio	Bending Stiffness Scal	e Factor
lat slabs—prestressed /alls-cracked ^b	Refer to Section 10.4.4.2 $0.5E_cA_g$	$0.4E_{\rm c}$ $0.4D_{\rm c}$	1st Point	0,1	0,3	
² or T-beams, I_g can be taken as twice the value of I_g or columns with axial compression falling between to the performed, the more conservative effective stiffness. See Section 10.7.2.2.	of the web alone. Otherwise, I_g should he limits provided, flexural rigidity s ses should be used.	d be based on the eff should be determined	2nd Point	0,5	0,7	ancel

Código de referencia : ASCE41-17 Tabla 10-5

Pa	iso 4 : Ch	equear	y actua	lizar el facto	r de rig	idez ef	fectiva de las columnas.	
G								
Global Control Control	View Stru Load Case * I Load Case	Hinge Properties	Gene	t Properties rate Section Effective and Case for Check s Section Effective Sti Effective Stiffness	Boundary Stiffness	Perform Analysis *	Analysis Results Pushover Design Seismic Evaluation Query Tools Reactions * P1 Stresses * Pushover Curve Pushover Story graph * Pushover Result of Fiber Section Pushover Hinge Properties Pushover Smart Graph * Pushover Result of Fiber Section Pushover Hinge Result * Pushover Results Pushover Result of Fiber Section	Pushover Text Text
	Check Effective St Calculation M O Calculated © Calculated Sorted by O P	iffness of Col ethod I by : KIST I by User Def fember roperty	umn FEC2019	- · · ×	Al d esc	dar clic e cala de n	en 'Update', el factor de rigidez a flexión del miembro seleccionado se actualiza en el modelo. El factor de rigidez actualizado se refleja en los factores de escala por elemento 'Element stiffness Scale Factor'.	
	MEMB SECT SEL	Section	Axial Load Ratio	Bending Stiffness Scale Factor			33: [Group=Default : Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1] 37: [Group=Default : Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1] 37: [Group=Default : Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1] 37: 98: [Group=Default : Ax=1 ; Ax=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1]	
	7 1 96 1 4 1 97 17	1000	0.11	0.31			99: [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0,409479 : Iz=0,409479 : Weight=1] 100: [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0,334732 : Iz=0,334732] Weight=1] [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0,334732 ; Iz=0,334732] 101: [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0,334732 ; Iz=0,334732]	
	2 98 7	1~3C3	0.06	0.30			102 : [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0, 399397 : Iz=0, 399397 Weight=1] 103 : [Group=Default : Ax=1 : Ay=1 : Az=1 : Ix=1 : Iy=0, 328443 : Iz=0, 328443 Weight=1]	
	99 4	102	0.21	0.41			Image: Second state in the second s	
	2 V 101 V	101	0.13	0.33			106 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 310948 ; Iz=0, 310948 Weight=1] 107 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 3 ; Iz=0, 3 ; Weight=1]	
	102 4	1C2	0.20	0.40			108 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 398676 ; Iz=0, 398676] Weight=1] 109 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 328037 ; Iz=0, 328037] Weight=1]	
	103 2 104	1C1 1~3C3	0.13	0.33			Image: The second se	
	Connect Mo	del View Unselect A	All Update	Close			Image: Transmission of the second s	

- La rotación en la rótulas se calcula de acuerdo con el factor de escala de rigidez del elemento

Concrete Design Code

2. Mejoras en el chequeo a cortante de nudos

Select Check Position

Se agregó una opción para el chequeo de nudos en ambos extremos de la columna (Top / Bottom):

En versiones anteriores, el chequeo del nudo en el piso superior no estaba disponible.

En midas Gen2021 v2.1, el chequeo de nudos ahora es posible para todos los pisos:

En versiones anteriores, el chequeo del nudo en el piso superior no

2. Mejoras en el chequeo a cortante de nudos

Se agregó una opción para el chequeo de nudos en ambos extremos de la columna (Top / Bottom):

Concrete Design Code Select Check Position En midas Gen2021 v2.1, el chequeo de nudos ahora es posible para Design Code : Eurocode2:04 OTOD Bottom todos los pisos: Italy National Annex : Apply NTC NTC2018 Posición para chequeo de nudos: Reporte de diseño (Gráfico) Apply EC8:04 Capacity Design 45 Strut Angle for Shear Resistance Deg NIT SYSTEM : kN.m Design Code Eurocode2:04 Effective Creep Ratio (Philef) Member Number 346 fck = 20000, fyk = 400000, fyx = 400000 KPa Material Data Slenderness Limit Column Height 4 m Lambda_lim = 20+A+B+C/sqrt(p) C3 (No : 303) Section Property Rebar Pattern 20 - 6 - D22 Ast = 0.007742 m² (pst = 0.012) A: 0,7 Calculate by Program в: 2. Axial and Moments Capacity Load Combination : 14 Pos : J) C : 🗋 Calculate by Program ton Concentric Max. Axial Load N Rdmax = 11123 0 kN Axial Load Ratio N_Ed/N_Rd = 88 1066 / 394 322 = 0.223 – 🔄 Seismic Design Paramete Moment Ratio M Ed/M Rd = 217.676 / 984.221 = 0.221 🖂 Bearr-Column Joint Design M Edv / M Rdv = 210,596 / 953,652 = 0.221Gamma_rd 1.1 M Edz / M Rdz = 55.0625 / 243.390 = 0.226formalized Axial Load Ratio Nu d/0.55 = 0.022 / 0.550= 0.040Confined Joint Not Confined Joint Select Check Position M-N Interaction Diagram N(kN) 11128 () Top Bottom N Rd(kN) MLR 0=14.32 N.A=12.82 9741 11122.98 Strong Column Weak Beam 111238080 10286.61 8959.39 8978 SUM(M_Rc) > 1.3 * SUN (M_Rb) 7591.17 6690 Consider strong column-weak beam on last floor 6343.34 4218 Opción agregada 5260 05 Select Ductility Class 18.9.9 4636.02 4050.47 1452 DCH (High Ductility) 3079.74 1845.88 ODCM (Medium Ductility) (88,218) M(kN-m) 285.95 -1741 31 Secondary Seismic Member None -2893 Reporte de diseño (Detallado) ~ ... -2602 87 Shear Force for Design Gamma_rd 3. Shear Capacity Column 1.3 Wall 1.2 Beam 1.2 [END] v (LCB: 19 POS: J) z (LCB: 19 POS: J) [[[*]]] CALCULATE BEAM-COLUMN JOINT CAPACITY ABOUT MAJOR AXIS. (BOTTOM) Consider for Shear Wall alpha_s max Applied Shear Force (V_Ed) 332 720 kN 357.129 kN 332.720 / 268.154 = 1.241 357,129 / 268,154 = 1,332 Consider Ved of elastic strength Load combination V Ed / V Rdc Compute joint geometry information. [NTC2018, 7.4,4,3] - bc = 800.0000 mm. - hc = 800.0000 mm. - by = 600.0000 mm. - hjc = 647.6000 mm. - bj = MIN[bc, bw+0.5hc] = - 411 sides dno 1 have haves and h for primary members V Ed / V Rds 332.720 / 359.156 = 0.926 357.129 / 359.156 = 0.994 V_Ed / V_Rdmax 332.720 / 1917.78 = 0.173 357.129/1917.78 = 0.186 Wall design bending moment for seismic load Shear Ratio 0 926 < 1 000 O K 0.994 < 1.000 O.K 0,6 Asw-H_req 0.00147 m²/m, 2-D10 @90 0.00158 m²/m, 2-D10 @90 Friction Coefficient for Wall Silding [MIDDLE] y (LCB: 19, POS: 1/2) z (LCB: 19, POS: 1/2) Torsion Design Applied Shear Force (V Ed) 332.720 kN 357.129 kN 800.0000 mm. b) = MIN[bc, bw+0.5*hc] = 800.0000 mm.
 All sides don't have beams and bw >= 3/4*bc ---> Nonconfined joint. Moment Redistribution Factor for Beam 332.720 / 272.497 = 1.221 357.129/272.497 = 1.311 V_Ed / V_Rdc V Ed / V Rds 332.720 / 359.156 = 0.926 357.129 / 359.156 = 0.994 Consider Shear Strength of Concrete for Checking V_Ed / V_Rdmax 332.720 / 1917.78 = 0.173 357.129 / 1917.78 = 0.186 (). Compute maximum spacing of ties/spirals. -, Smax = 50.000 mm. (Hoop spacing for shear) 🗌 Wall 🗹 Column/Brace 🛛 🗹 Beam Shear Ratio 0 926 < 1 000 O K 0.994 < 1.000 .. OK 0.00147 m²/m, 2-D10 @90 0.00158 m²/m, 2-D10 @90 Asw-H_req P-M Curve Calculation Method Compute horizontal shear force in local-z direction. (LCB = 15, POS = 1) [NTC2018, 7.4.4.3.1] [JOINT : BOTTOM] y (LCB: 15, POS: I) z (LCB: 17, POS: I) O Keep P Constant Ash.reg / Ash.use 0.00120/0.00128 = 0.934 0.00180/0.00185 = 0.969 Keep M/P Constant Pu = Vcz = 147.63 kN. 24.932 kN. Joint Ratio 0.934 < 1.000 O.K 0.969 < 1.000 O.K Applied axial force Ash.jnt 2-9 D10 2-13 D10 Applied shear force SUM.As1.Fyd = SUM[As1 + fyd(beam)] = 704.974 kN Beam Top Reinforcement OK Close

estaba disponible.

3. Valor del periodo T1 definido por el usuario para el diseño a cortante según EC8:04 & NTC2018

	Concrete Design Code	×	EC8:04 Capacity Design X
	Design Code : Eurocode	2:04 🗸	Structure Information
Ecuación aplicada : 5.25 (EC8:04)	National Annex : Italy ✓ Apply NTC NTC2 ✓ Apply Special Provisions Strut Angle for Shear Resis Effective Creep Ratio (Phi_ Slenderness Limit	D18 v s for Seismic Design tance : 45 Deg ef) : 2,14	Structure Type : Coupled Wall System Behavior Factor (q) Calculate by Program Alpha_u / Alpha_1 : 1.2 User Input q 2 qo 2 Fundamental Period(T1)
$V_{\rm Ed} = \varepsilon \cdot V_{\rm Ed}$		(5.24)	Ocalculate by Program Opción agregada
where V_{Ed} is the shear force from the analysis ε is the magnification factor, calcul- 1,5:	ated from expression (5.25), but not less than	T1_X 0,1 T1_Y 0,1 Elastic Response Spectrum Default By Function BS_SLV_q=2_cat-B_T1 Spectrum Parameters Soil Factor (S) Tb Tc 1,2 0,131 0,3931 2,6
$\varepsilon = q \cdot \sqrt{\left(\frac{\gamma_{\text{Rd}}}{q} \cdot \frac{M_{\text{Rd}}}{M_{\text{Ed}}}\right)^2 + 0.1 \left(\frac{S_e(T_c)}{S_e(T_1)}\right)^2} \le q$ $T_1 \qquad \text{is the fundamental period of vibr forces V_{\text{Ed}};}$	ation of the building in th	(5.25) e direction of shear	Ref, Reak Ground Acc, (AgR): 0,147 g Importance Factor(I): 1 Viscous Damping Ratio (xi): 5 %

midas Gen

Gen 2021 v2.1 Release Note

3. Valor del periodo T1 definido por el usuario para el diseño a cortante según EC8:04 & NTC2018

- Permite definir el periodo fundamental (T1) directamente para el diseño a cortante de muros esbeltos

midas Gen

4. Nuevo método para el cálculo del momento de diseño según NTC2018

- El Método 2 es un método alternativo en el que el momento de diseño del muro superior se aplica excesivamente al método del código (Método 1).

4. Nuevo método para el cálculo del momento de diseño según NTC2018

- El Método 2 es un método alternativo en el que el momento de diseño del muro superior se aplica excesivamente al método del código (Método 1).

5. Adición del anexo de Suecia para el Eurocódigo

Anexo de Suecia (BFS2019:1) para el diseño de acero

Tabla de Resultados de Diseño

	1			78																
Euro	ocod	le3:05 C	ode Che	cking	Result Dialog															×
Co So	ode ortec	: EC3:0 I by 🔵	5, SWE2 Membe Property	019 ir y	Unit Change,	t : kN , Update	m	- Prim	ary Sortir ECT	ng Option MEMB										
	сн	MEMB	SECT	SE	Sectio	n		Len	Ly	Ky	Bmy	N,Ed	My,Ed	My,Ed	Mz,Ed	Vy,Ed	Vz,Ed	T,Ed	Def	^
	к	COM	SHR	L	Material	Fy	LUB	Lb	Lz	Kz	Bmz	N,Rd	Mb,Rd	My,Rd	Mz,Rd	Vy,Rd	Vz,Rd	T,Rd	Defa	
		254	221	-	SG1, W24	x76		12.0000	12.0000	1.000	1.000	0.00000	-458.65	-458.65	0.00000	0.00000	181.729	14	-0.0142	
	UK	0.707	0.165		A36	248211	2	4.00000	12.0000	1.000	1.000	3587.05	648.575	813.491	116.329	0.00000	1101.29	121)	0.04800	1
	or	251	222	-	SG2, W18	8x55	2	3.00000	3.00000	1.000	1.000	0.00000	-235.96	-235.96	0.00000	0.00000	141.276	-	-0.0016	
		0.518	0.194		A36	248211	3	2.00000	3.00000	1.000	1.000	2594.20	0.00000	455.555	75.2479	0.00000	729.078	-	0.02400	
	or	125	223	-	SG3, W18	8x55		6.00000	6.00000	1.000	1.000	0.00000	228.311	228.311	0.00000	0.00000	114.076	5- L	-0.0031	1
	UN	0.501	0.156		A36	248211	0	2.00000	6.00000	1.000	1.000	2594.20	0.00000	455.555	75.2479	0.00000	729.078	- 14 I)	0.02400	
		24	224		SG4, W30:	x116		10.8000	10.8000	1.000	1.000	0.00000	1274.54	1274.54	0.00000	0.00000	-562.25	-	-0.0465	

Reporte	Gráfico	
Preview Window		- 🗆 X
Memb No : 25	- 🖨 Print 🖨 P	rint All 📳 Close 📕 Save
1. Design Inform	nation	8 Å
Design Code	Eurocode3:05 & SWE2019	e <u>†</u> ∰= —
Unit System	kN, m	3
Member No	25 A38 (No.4)	
Material	(Ev = 248211 Es = 1999	48024)
Section Name	SG4 (No:224)	
	(Rolled : W30x116).	p.200570
Member Length	: 10.8000	
2. Member Ford	ces	
Axial Force	Fxx = 0. Re	porte Detallado
Bending Moments	My = 124	Nvi = 1194 15 (for Lb) 0/b 0.21315 0zb 0.00888
End Moments	Myi = 124 MIE	DAS/Text Editor - [App1 Steel.acs] - X
	Nzi = 0.0 🏧 File	e Edit View Window Help _ & ×
Shear Forces	Fyy = 0. 🗋 🚅	;
	Fzz = 5800104	<u>*</u>
3. Design Parar	neters 00108	midas Gen - Steel Code Checking[Eurocode3:05, SME2019] Gen 2021
Unbraced Lengths	00108	
Effective Length Fa	actors 00110	+, PRUJELT : +. MEMEER NO = 25, ELEMENT TYPE = Beam
Equivalent Uniform	n Moment Factors 00112	*. LUNULUMBINU = 2, MATENTAL NU = 1, SECTION NU = 224 +. UNIT SYSTEM : KN, m
4 Checking Do	00114	*. SECTION PROPERTIES : Designation = S64, W30x116
4. Checking Re	SUIL 00117	Depth - 0.762, Top F Width - 0.267, Bot F Width - 0.267 Web Thick = 0.014, Top F Thick = 0.022, Bot F Thick = 0.022
L/r	= 194.2 < 00119	Area = 2,21645e-002, Avy = 1,12450e-002, Avz = 1,23833e-002
Axial Resistance	00121	Ybar = 1.33286e-001, Zbar = 3.81127e-001, Oyb = 2.13151e-001, Ozb = 8.88264e-003 Weiv = 5.39134e-003, Weiz = 5.12915e-004, Weiv = 6.19431e-003, Wpiz = 8.06244e-004
N_Ed/N	t_Rd = 0.0000123	lyy = 2.05202e-003, lzz = 6.82620e-005, lyz = 0.00000e+000 iy = 3.04800e-001, iz = 5.56260e-002
Bending Resistand	00125 00128	J = 2.57537e-006, Dwp = 9.34829e-006
M_Edz/I	$M_Rdz = 0.000_{00128}^{00128}$	*. DESIGN PARAMETERS FOR STRENGTH EVALUATION : Ly = 1.08000e+001, Lz = 1.0800e+001, Lb = 2.70000e+000 Ku = 1.00000e+000
Combined Resista	ince 00130	+ MATERIAL PROPERTIES :
R.MNRd	= NAX[N_Edy/M00132 00133	Fy = 2.48211e+005, Es = 1.99948e+008, MATERIAL NAME = A36
	00134 00135	+. FORCES_AND MOMENTS AT (1)_POINT :
	00136 00137	Axial Force Fix = 0.00000e+000 Shear Forces Fiy = 0.00000e+000, Fizz = 5.50379e+002
	00138	Ending Woments Wy = 1.24064e4003, M2 = 0.00000e4003 End Moments Wy = 1.24064e4003, Myj = 1.18415e4003 (for Lb)
	00140	Mzi = 0.00000e+000, Mzj = 0.00000e+000 (for Lz)
	00143	 Sign conventions for stress and axial force. Stress : Compression positive
	00145	- Axial force: Tension positive.
	00147 00148	
	00149 00150	[[[+]]] ULASSIFY LEFT-TOP FLANGE OF SECTION (BTR).
	00151	(). Determine classification of compression outstand flanges.
	00153	i curuuuuus-ub 1801e 5.2 (Sneet 2 of 3), cM 1393-1-5 j e = SURT(235/14) = 0.97 k/t = RTD = 5 R4
	00155	signal = 200287.259 KPa. - signal = 200287.259 KPa.
	00158	BTR < 9+e (Class 1 : Plastic).
	00160	midas Gen - Steel Code Checking[Eurocode3:05, SWE2019] Ben 2021
	00162	······································
	Ready	Ln 62 / 383 , Col 102

5. Adición del anexo de Suecia para el Eurocódigo

Anexo de Suecia (BFS2019:1) para el diseño de concreto reforzado

Reporte Gráfico

Control of the prior of th	×	Preview Window				- 0	×	
1. Design Condition Design Condition UNIT PETER: N em Design Condition UNIT PETER: N em Marcin Case Search No. 500, type 400 MPG Same False Search No. 500, type 400 MPG Same False The Same False Construction Construction	N	o:43 √ 🖨 Print 🖽	Print All 🗐	Close 🖬	Save			
A Long III Controlled in the second secon		Desire Condition	and a				~	
2. Automation Moments Capacity Lardicenterine in the Automation i	1.	Design Condition Design Code Eurocode2.04 & SWE20 Member Number 43 Material Data fck = 30, fyk = 500, fyx Column Height 5000 nm Section Property C3 (No. 306) Rebar Pattern 16 - 5 - P25	019 Uf v = 400 MPa Ast = 7853.92 m	NIT SYSTEM	9) B	, , , , , , , , , , , , , , , , , , ,		
Weinder Aus Lad Tear Number 1 Particular 1000 Particular 1000 Weinder Aus Lad Tear Number 1 Particular 1000 Particular 1000 Weinder Aus Lad Tear Particular 1000 Particular 1000 Particular 1000 Weinder Aus Lad Tear Particular 1000 Particular 1000 Particular 1000 Scheer Capacity Particular 1000 Particular 1000 Particular 1000 Particular 1000 Scheer Capacity Particular 1000 Particular 1000 Particular 1000 Particular 1000 Particular 1000 Applied Bare Fore (V.E.0) Particular 1000 Particular 10000 Particular 10000	2.	Axial and Moments Capacity Load Combination: 12 (Pos. J) Concentric Max. Axial Load Axial Load Ratio Moment Ratio MEd / M_ M_Ed / M_ M_Ed / M_	= 1165766 Rd = 2149706 Rd = 4133579 _Rdy = 1700022 _Rdy = 3767811	39 N 3 / 5381027 327 / 1044520 257 / 4180357 114 / 9572193	=0.399 < 1.000			
All Handles Digen Reporte Detallado Image: Strate State MDAS/Text Editor - (App5_EC2 Design-Final model.rcs) - Image: Strate State MDAS/Text Editor - (App5_EC2 Design-Final model.rcs) - Image: Strate State File Edit View Window Help Image: State Image: State File Edit View Window Help Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State Image: State <t< td=""><td></td><td>Normalized Axial Load Ratio Nu_d/0.5</td><td>5 = 0.256 / 0</td><td>1.550</td><td>= 0.465 < 1.000 O.K</td><td></td><td></td><td></td></t<>		Normalized Axial Load Ratio Nu_d/0.5	5 = 0.256 / 0	1.550	= 0.465 < 1.000 O.K			
Image: Section of the section of th		M-N Interaction Diagram	Rep	orte	Detallado			
The first status - (App)_EC2 Design-Final model:rs() File Sta		7105044		9440409	15 578011860.34			
Constraints Constrain		4121481	MIDAS	/Text Edito	er - [App5_EC2 Design	-Final model.rcs]		- U X
Schear Capacity Construction		2914219	🚰 File E	dit View	Window Help	-		- & ×
9 9 mides Gen - RC-Cotum Design [Eurocode2:04 & Eurocode8:04] Gen 2021 3. Shear Capacity 0 000 mides Gen - RC-Cotum Design [Eurocode2:04 & Eurocode8:04] Gen 2021 3. Shear Capacity 0 000 mides Gen - RC-Cotum Design [Eurocode2:04 & Eurocode8:04] Gen 2021 1000 - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moent by economic lock - Minimum moe		-100%	🗋 🖬 🖬	1 <i>6</i> Q		 # # 🛛 🖂	🗒 🔥 % % 🖄 a-b	A
<pre>mides Ben - R-Colum Design [Eurocode:04 & Eurocode:04] Ben 2021 active Start Representation Start Represent</pre>		-1607606 MKN	00155 ¥ 00156					
3. Shear Capacity" [100] Paged Bhee Fore(V_E6) () C ()		0 CONTRACTOR	00157 00158	nidas Gen	- RC-Column Design	[Eurocode2:04 & Eu	rocode8:04]	Gen 2021
Clair, Second (LCB) 0016 Clair, Second (LCB) 0017 Clair, Second (LC	3.	Shear Capacity (END) y	00160 00161 00162	().	Calculate design nom Minimum moment by	ent for slender/non- eccentricity.	slender element about mi	nor axis.
• "End "Chiman • • • • • • • • • • • • • • • • • • •		V_Ed/V_Rdc V Ed/V Rds	00163		Emin_z = 2 M_Edz_min = N_Ed	* Enin_z = 40968437.	327 N-nn.	
ArastLing Torse Applied Sheer Form (V.Ed.) Colling Applied Sheer Form (V.Ed.) Colling VEAT_DATA Colling Applied Sheer Form (V.Ed.) Colling VEAT_DATA Colling Asset_Ling Colling VEAT_DATA Colling Asset_Ling Colling Colling Colling Asset_Ling Colling Colling		V_Ed / V_Rdmax Shear Ratio 0	00166		 Applied design mo M_Edz_app = MAX[> M Edz_app is 	ment. M_Edz, M_Edz_min] = applied for design.	54339527.396 N-mm.	
Amada Prove (LEB) Control (LEG) Cont		Asw-H_req 0	00168	()	Design forces/moment	s of column(brace)		
U = 21, Pass W = 21, Pass Sheer Faile -::::::::::::::::::::::::::::::::::::		Applied Shear Force (V_Ed)	00170	× 7.	Axial Force (Comp Combined Bending	ression) N_Ed = Moment N_Ed =4	2048421.87 N. 03039466.99 N-nm.	
1.2.21 Johnnak Akwellung . Stear Force of Local-y V.Edb - 377260.15 N. 2.3.22 V.Edb - 40055115 N. 3.3.22 V.Edb - 4005112 N. 3.3.22 V.Edb - 4005112 N. 3.3.22 V.Edb - 400572 N. 3.3.22 V.Edb - 400572 N. 3.3.22 V.Edb - 40000 N. 3.3.22 V.Edb		V_Ed/V_Rdc V_Ed/V_Rds	00172		 Bending Moment ab Bending Moment ab 	out Local-y M_Edy =1 out Local-z M_Edz =3	89300632.19 N-nm. 55817484 97 N-nm	
Awertung District Class Torket Torket Direction For Ductie Design. 00177 TIIII AWALVEE CARACITY OF BIAKIALLY LAACED RECOLLINN(C-BRACE). 00100 TIIII AWALVEE CARACITY OF BIAKIALLY LAACED RECOLLINN(C-BRACE). 001000 TIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIIII AWALVEE CARACITY OF BIAKIALY LAACED RECOLLINN(C-BRACE). 001000 TIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		V_Ed / V_Rdmax 3 Shear Ratio 0	00174		Shear Force of Lo	cal-y V_Edy =	377950.15 N.	
Offset I[[1+]] AMALYZE CAPACITY OF BLAXIALTY LOADED RC_DOLUM(RC-BRACE). 00100 (). Design Moment about y-direction For Ductile Design.		Asw-H_req 0	00176		Shear force of Lu	Cal-2 V_LUZ -	400001.10 N.	
(). Design Moment shortgirection For Ductite Design (). Design Moment shortgirection For Ductite Design (). Legist Moment shortgirection For Ductite Design (). Design Momentgirection For Ductite Design (). Design Momentgirection For Ductite Design (). Design Momentgirection For Ductite Design (). Design Forgirection For Ductite Design (). Design Forgirection For Ductite Design (). Design			00177 00178 00179 =	[[[+]]]	ANALYZE CAPACITY	OF BIAXIALLY LOADED	RC_COLUNN(RC-BRACE).	
00185 (). Design Memert about 2-direction For Ductile Design. 00186			00180 00181 00182 00183 00184	().	Design Moment about M_Edy1 = 11144558 M_Edy2 = 18930063 M_Edy = MaxIM_Ed	y-direction For Duct 7.34 N-mm.(from Load 2.19 N-mm.(from Mone v1. M Edv21 =1893006	ile Design. Combination) nt Resistance of Beams) 32.19 N-mm.	
00190 (). Compute design parameters: 00190			00185 00188 00187 00188 00189	().	Design Moment about M_Edz1 = 5433952 M_Edz2 = 35581748 M_Edz = Max[M_Ed	z-direction For Duct 7.40 N-mm.(from Load 4.97 N-mm.(from Mone z1, M_Edz2] =3558174	ile Design. Combination) nt Resistance of Beams) 84.97 N-mm.	
00203 (). Check the ratio of reinforcement. 00204 - Roomin = 0.010000 00206 - Root = 0.010000 002007 Proti = 0.010000 002007 Roomin - Root => 0.014 002007 - Intervention - Root => 0.014			00190 00191 00192 00193 00194 00195 00196 00197 00198 00199 00200 00201 00201	().	Compute design param - Ag = - Ast = - Rhot = Ast/Ag = - Hanbda = 0.8000 - Gamma_c = 1.50 (- Alpha_cc = 1.00 - Gamma_s = 1.15 (- Gamma_s = 1.15 (- fyd = fyk / 6	eters. 420000,0000 nm^2. 7853,9200 nm^2. 0.018700 (fck <= 50 MPa.) (rck <= 50 MPa.) for Fundamental or E Default or User Defi c + fck / Ganma_c = for Fundamental or E amma_s = 434.763	arthquakes). ned). 20.000 MPa. arthquakes). NPa.	
midas Gen - RC-Column Design [Eurocode2:04 & Eurocode8:04] Gen 2021			00203 00204 00205 00208 00207 ¥	().	Check the ratio of r Rhomin = 0.0100 Rhot = 0.0187 Rhomin < Rhot	einforcement. OO OO → O.K !		
			00208	nidas Gen	- RC-Column Design	[Eurocode2:04 & Eu	rocode8:04]	Gen 2021

Tabla de Re<u>sultados de Diseño</u>

E	urocode2	:04 R	C-Column D	esign Res	ult Dialog	I.												8			×
1000	Code:E Sorted b	:C2:0 y ○ ●	4,SWE2019 Member Property	U	nit : N	, 1	mm	Primar O SEC	y Sorting T	Option /IEMB											
	MEMB	SE	Section	fck	fyk	LC	Uc	N_Ed	M_Ed	4.44	V Dahar	LC	V_Ed.end	Rat-V.end	Asw-H.e	H-Rebar.end	Ash.req	Rat-As	—	Deber	Г
	SECT	L	Bc Hc	Height	fyw	в	Rat-Uc	Rat-N	Rat-M	AST	v-Rebar	В	V_Ed.mid	Rat-V.mid	Asw-H.m	H-Rebar.mid	Ash.us	h	J.	Rebar	
	0	-	C1	30.0000	500.000	10	0.471	2694578	1.1E+09	44704	24 7 025	12	395581	0.978	4524.0	2-P12 @50	4731.50	0.072		Colum	1
	106	1	600.0 600.0	4500.0	400.000	10	0.856	0.983	0.974	11/01	24-1-123	13	555884	0.830	3258.2	2-P10 @40	4869.48	0.972		diure	
	0	-	C1A	30.0000	500.000	12	0.249	1496645	4.2E+07	6972.2	14 6 006	13	431672	0.959	3098.8	2-P12 @70	2229.69	0.000	2	10.012	1
	156	1	500.0 600.0	5000.0	400.000	15	0.454	0.188	0.190	0072.2	14-5-125	13	431672	0.986	3098.8	2-P10 @50	2262.00	0.000	-	10112	
	0	-	C2	30.0000	500.000	44	0.333	763175	9.9E+08	10700	22.6.025	11	389761	0.964	3231.4	2-P12 @70	3300.71	0.055	2	22 012	
	206	1	600.0 600.0	4000.0	400.000	110	0.605	0.912	0.927	10/33	22-0-123	11	419465	0.939	2458.6	2-P10 @60	3455.76	0.855	-	22 112	
	0	-	C3	30.0000	500.000	10	0.261	675835	7.5E+08	7952.0	46 6 006	12	411273	0.898	2513.3	2-P12 @90	3216.31	0.075		24.042	1
	306		600.0 700.0	4000.0	400.000	10	0.474	0.780	0.770	1033.9	10-3-825	12	393064	0.880	2303.9	2-P10 @60	3298.68	0.975	2	21712	
		_																	1		

midas **Design+**

1. Dimensiones definidas por el usuario para placa colaborante de acero en módulo de vigas compuestas

Las dimensiones pueden ser definidas manualmente:

ection De	eck Load Vibration	1
Deck Plate	ck Plate efined	Prop
Section	DPL-75x200x58x80x	1.6 ~
Hr	75.00	mm
Sr	200.00	mm
Br0	58.00	mm
Br1	80.00	mm
	1.60	mm

Sección definida por el usuario

1. Dimensiones definidas por el usuario para placa colaborante de acero en módulo de vigas compuestas

• Las propiedades de la sección compuesta pueden ser definidas de acuerdo a la base de datos, o también ingresando los datos manualmente:

Use Deck Plate		Deck Properties			
	L		User Define	d	
ection DPL-	80x200x58x80x	2	A	3355.44	mm²
Hr	80.00	mm	W	0.00	kN/m³
Sr	200.00	mm	Centr	47.21	mm
Br0	58.00	mm	Ixx	2550127.58	mm ² x ²
Br1 +	80.00	mm	Z(+)	55190.14	mm ³
	2.00		Z(-)	80208.37	mm ³
rection Perp	endicular to Bea	m 🗸	Ht	25.46	mm

 Deck Plate Direction 	: DPL-80x200x58x80x2 : Perpendicular to Beam							
Hr	Sr	Bro	Brt	t	Ht			
80.00mm	200mm	58.00mm	80.00mm	2.000mm	25.46mm			
A	W	Cy	kx	Z(+)	Z(-)			
3,355mm ²	0.000kN/m ³	47.21mm	2,550,128mm*	55,190mm ³	80,208mm ³			

- 1. Sección de la base de datos: Se utilizan las propiedades predefinidas en la base de datos
- 2. Sección definida por el usuario: Se utilizan las propiedades calculadas automáticamente como secciones de espesor delgado.

