Release Note

Release Date : April. 2020

Product Ver. : midas Gen 2020 (v2.1) and Design+2020(v2.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

	1) Non-dissipative element design for slab as per NTC2018	4
	2) Improvement of design speed for non-dissipative element	
	3) Apply partial safety factor in inelastic material model	6
	4) Add column design by constant P	7
	5) Improvement of joint design as per EC2 and NTC	8
	6) Improvement of slab design as per EC2 and NTC	
	7) Cyclic shear resistance check as per NTC2018	
	8) Insert strength loss option for EC8 hinge type	
	9) Improvement about masonry pushover analysis and post processing	
	10) Improvement of hinge model as per EC	
	11) Energy result graph & additional damping ratio in time-history analysis resu	lts 21
	12) Add reaction table for each step in pushover	
	13) Revit 2020 interface	
	14) Select Inelastic Hinge Result Output in Inelastic time history analysis	26
	15) Improvement in analysis speed for inelastic time history analysis	28
	16) Add result summary table of fiber beam, wall for inelastic hinge	
• midas Des	ign+	

1) Steel design tool as per AISC	31
2) Anchor bolt module as per ACI	37

1. Non-dissipative element design for slab as per NTC2018

Add Non-dissipative element design for Slab.

2. Improvement of design Speed for Non-dissipative element

Improvement of design Speed for Non-dissipative element → Add Approximate Method

. Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	21	21	5
Moment (M_Ed)	141604.88	59413.77	134663.44
Factored Strength (M_Rd)	152013.72	84276.96	123768.52
Check Ratio (M_Ed/M_Rd)	0.9315	0.7050	1.0880
Neutral Axis (x/d)	0.1670	0.1172	0.1445
(+) Load Combination No.	5	5	21
Moment (M_Ed)	99836.64	63882.84	96479.04
Factored Strength (M_Rd)	84427.01	84276.96	84489.36
Check Ratio (M_Ed/M_Rd)	1.1825	0.7580	1.1419
Neutral Axis (x/d)	0.1150	0.1172	0.1157
Elastic Bending Moment C	apacity (for Non-Diss	sipative Element)
	END-I	MID	END-J
(-) Load Combination No.	53	53	37
Moment (M.Ed)	101482.80	38922.76	96260.94
Elastic Strength (M'.yd')	143255.27	74502.94	112471.78 🧲
Check Ratio	0.7084	0.5224	0.8559
(+) Load Combination No.			
	37	37	53
Moment (M.Ed)	37 59714.55	37 43391.82	53 58076.53
Moment (M.Ed) Elastic Strength (M.yd')	37 59714.55 74757.76	37 43391 . 82 74502 . 94	53 58076.53 74901.73

3. Apply partial safety factor in inelastic material model

Apply "Partial Safety Factor" in Inelastic Material Model

4. Add Column Design by Constant P

Add Column Design by Constant P → Add P-M Curve Calculation Method Option

Gen 2020 v1.1

Add Option

- P-M Curve Calculation Method
- Keep P Constant
- Keep M/P Constant

Gen 2020 v2.1

5. Improvement of Joint design as per EC2 and NTC

Joint Design as per EC and NTC

→ It is possible to skip a Joint design for "Not confined" condition

Concrete Design Code	×	
Design Code : Eurocode2:04 ~		
National Annex : Italy Apply NTC NTC2018 Apply Special Provisions for Seismic Design Strut Angle for Shear Resistance : 22 Deg Effective Creep Ratio (Phi_ef) : 2.14 Slenderness Limit Lambda_lim = 25/sqrt(n) Where, n = N_Ed/(Ac*fcd)	J	
 ☑ Beam-Column Joint Design Gamma_rd 1.2 ☑ Confined Joint ☑ Not Confined Joint Strong Column Weak Beam SUM(M_Rc) > 1.3 + SUM(M_Rb) ☑ Consider strong column-weak beam on last floor Select Ductility Class 		Add Option Beam-Column Joint Design Gamma_rd 1.2 Confined Joint Not Confined Joint

5. Improvement of Joint design as per EC2 and NTC

Add Hoop Spacing of Joint in Design

Graphic result

[JOINT]	y: 6(I)	z: 6(l)	
Ash.req / Ash.use Joint Ratio Ash.jnt	0.00239 / 0.00285 = 0.838 0.838 < 1.000 O.K Check Spacing	0.00239 / 0.00285 = 0.838 0.838 < 1.000 O.K Check Spacing	Printout "Check Spacing' In graphic,
		T	-

5. Improvement of Joint design as per EC2 and NTC

Joint Design as per EC and NTC

→ Improvement to check a hoop area and spacing in Joint design

Compute horizontal hoops to limit the maximum diagonal tensile stress of concrete. [NTC2018, 7.4.4.3.1]___ 0.055 -. Nu_d = -.fctd = 1164.8469 KPa. -.fvj = {Vihd/(bj*hjc)}^2 / (fctd + Nu_d*fcd) = -.Ash.req.1 = (fvj-fctd)*bj*hjw/fywd = 1305.825 KPa. 2.362e-004 m^2. (). Compute horizontal hoops to ensure integrity of the joint after diagonal cracking.
 [NTC2018, 7.4.4.3.1]
 -. Gammard = 1.2000
 -. Beam Top Reinforcement : As1 = 0.0015 m^2.
 -. Beam Bottom Reinforcement : As2 = 0.0015 m^2.
 -. Ash.req.2 = Gamma_rd*(As1*As2)*fyd*(1.0-0.8*Nu_d)/fywd = 0.003 m^2. (). Compute horizontal hoops -. Ash.req = MIN[Ash.req1, Ash.req2] = 2.362e-004 m². -. Legs = -. Num = 12 -. Ash.use = Av1+Legs+Num = 0.002 m². -. Rat.Ash = Ash.reg / Ash.use = 0.138 < 1.000 ---> 0.K. (). Check space of horizontal hoops. -. sh.min = MAX[Bar Dia, Gravel Dia, 20mm] + Bar Dia = -. sh.use = 0.0498 m. > s.min ---> 0.K. 0.0345 m.

Design result table

Eurocode2:04 RC-Column Checking Result Dialog

Code : E Sorted b	iuroco y O	ode2:) Men) Prop	04,NTC nber ierty	2018 Ui Results ((nit∶kN ● Streng ○ Servic	, m th eability	ı Y	Primary S O SECT	orting Optio MEME												
MEMB	SE	Se	ection	fck	fyk	CHK	LC	V Babar	N_Rdma	Uc	N_Ed	M_Edy	M_Edz	V_Rdc.end	V_Rds.end	V_Rdc.mid	V_Rds.mid	LC	V_Ed.end	Rat-V.end	Ash.req
SECT	L	Bc	Hc	Height	fyw		в	v-Rebai	x	Rat-Uc	Rat-N	Rat-My	Rat-Mz	Rat-Vc.end	Rat-Vs.end	Rat-Vc.mid	Rat-Vs.mid	в	V_Ed.mid	Rat-V.mic	Rat-J
80			C2	24000.0	400000	OK	7	24 7 022	17482.8	0.056	802.368	718.331	179.889	445.291	1021.12	451.896	1021.12	7	971.662	0.952	0.00116
202		0.90	0 1.000	4.5000	400000	UK	· '	24-7-022	17402.0	0.000	0.363	0.358	0.342	2.182	0.952	2.150	0.952	7	971.662	0.952	0.679

Graphic result

[JOINT]	y: 6(I)	z: 4(l)
Ash.req / Ash.use	0.00116 / 0.00171 = 0.679	0.00024 / 0.00171 = 0.138
Joint Ratio	0.679 < 1.000 O.K	0.138 < 1.000 O.K
Ash int	2-12 D10	2-12 D10

6. Improvement of slab design as per EC2 and NTC

Add "Check ratio of x/d" and "Check Stress by Quasi-permanent Load combinations"

<pre>< < </pre>	Check x/d as per NTC2018 4.1.2.1.2.1	Add stress check by Quasi-permanent
	<pre><< BOTTOM >> Information of Parameters. Elem No. : 52 Thickness : 0.3000 m. Materials : fck = 1631.5459 tonf/m^2. fcd = 1087.6973 tonf/m^2. fcd = 1087.6973 tonf/m^2. fcd = 1087.6973 tonf/m^2. Covering : dB = 0.0750 m. dT = 0.0750 m. LCB No. : 1 Information of Design. b = 0.0010 m. (by Code Unit Length). d = 0.2250 m. lambda = 0.800 a = lambda + x = 0.021 m. eta = 1.000 Cc = eta*fcd*b*a = 0.0233 tonf. M_Rd = Cc*(d-a/2) = 4.9982 tonf-m./m Information of Moments and Result. Rein. Bar : D16 @300 As_req = 0.0003 m^2/m. (0.0003 m^2/m.) M_Ed = 1.6544 tonf-m./m. M_Rd = C.*(d-a/2) = 0.331 < 1.0> 0.K ! Check ratio of neutral axis depth to effective depth. x/d = 0.450 (fck <= 50 MPa.) x/d ratio = 0.053/ 0.450 = 0.118> 0.K </pre>	<pre><< UP >>formation of Permeters.Function of Permeters.Fu</pre>

4.1.2.1.2.1.

Per le travi continue, le travi di telai in cui possono essere trascurati gli effetti del secondo ordine e le solette, il rapporto x/d nelle sezioni critiche non deve comunque superare il valore 0.45 per fa ≤ 50 MPa e 0.35 per fa ≥ 50 MPa.

7. Cyclic shear resistance check as per NTC2018

Check of Cyclic shear Resistance as per NTC2018 in Existing RC building

- ULS Design

7. Cyclic shear resistance check as per NTC2018

Check of Cyclic shear Resistance as per NTC2018 in Existing RC building

- Result of Pushover Analysis

8. Insert strength loss option for EC8 hinge type

Insert Strength loss option for EC8 hinge type

Improvement about Masonry pushover analysis and post processing \rightarrow Add "q*" in Text Output

Target Displacement Capacity of SLV and SLC in Masonry

Updating My Masonry Pier hinge Type → Masonry > Pier Type

Add/Modify Pushover Hinge Properties X Name : Description	New Building	Existing Building
Name : Description : Input Method Shape of FEMA Curve Strength Loss Type of I-End & J-End Properties Element Type Material Type Material Type Wall Type Or Strength Loss Type of I-End & J-End Symmetric O Truss O General Link O Steel / SSC (filed) O Plate Plate O Isse of FEMA Curve Strength Loss Type of I-End & J-End Asymmetric Definition O Hinge Type O rotal Strength Loss at Point E, -E No Figure C	New Building	Existing Building
O Truss O General Link O Steel / SRC filled Plate Unloading Stiffness Type Total Strength Loss at Point E, -E No ✓ Figure C		
Properties	0.01	0.01
Skeleton Model Type Primary Curve		
O Spandrel Type Fiber Model • Symmetric • Symmetric • Symmetric • Symmetric • Symmetric	0.01	0.01
Axial-Moment Interaction Type Fiber Section • None • P-M Interaction • User Defined • None • P-M Interaction • User Defined • None • P-M Interaction • Section: • Axial-Shear Interaction • Section: • None • Point Name • None • Out=ot=plane Nonlinearity of Fiber Wall	0.01	0.07
Component Properties		
Component Hinge Location Skeleton Curve	OE	Existing Buildings
Image: Description Properties Properties Collapse Prevention (CP) 6 6 Vield Surface Properties Masonry Properties Vield Rotation (DV) Initial Stiffness Initial Stiffness OK Cancel Apply Grad Grad Getty Other Stiffness OK Cancel Apply Irad Grad Getty Stiffness	In the strength (fhd) where of Vertical Loads (rregular Type 4.5 N/mm²
Unloading Stiffness Parameter Exponent in Unloading Stiffness Calculation 0.4 Plinching-Rule Factor (05A≤1,0) 0.5 OK Cancel		0K Cancel

MIDAS

Updating My Masonry Pier hinge Type → Masonry > Spandrel Type

Updating Fy Masonry Spandrel hinge Type

Masonry Properties				×
Building Type O New Buildings	● Existir	ng Buildings		
● Regular Type	🔿 Irregul	ar Type		
Horizontal Compressive Strength (fhd) Shear Strength in absence of Vertical Lo Hp	oads (fvkO)	4,5 0,2 100000	N/mm² N/mm² N	
		ОК	Cancel	

M	asonry Properties				×
	Building Type O New Buildings	● Existir	ıg Buildings		
	⊖ Regular Type	⊚ Irregul	ar Type		
	Horizontal Compressive Strength (fhd) Shear Strength in absence of Vertical Los Hp	ads (fvkO)	4,5 0,2 100000	N/mm² N/mm² N	
			OK	Cancel	

 $\begin{aligned} \text{Shear Resistance} &= \\ \text{Min. } \left[\quad V_t = ht f_{vko}, V_p = 2M_u/l \quad \right] \\ \text{where } M_* &= \frac{H_p \cdot h}{2} \left(1 - \frac{H_p}{0.85 \cdot f_{kd} \cdot h \cdot t} \right) \\ &\quad \text{Where,} \\ H_p \begin{cases} i) \quad 0.4 \cdot f_{kd} \cdot h \cdot t \\ H_p &: \textit{User Defined Value} \\ \textit{minium value} \end{cases} \end{aligned}$

Shear Resistance = $Min. [V_t = LT1.5f_{vko}/\beta \times \sqrt{1 + P/1.5f_{vko}}, V_p = 2M_u/l]$ where $[=1.5, 1.5 \le H/L]$

$$\beta \begin{cases} = 1.5 ; 1.5 \le H/L \\ = H/L ; 1.0 < H/L < 1.5 \\ = 1.0 ; H/L \le 1.0 \end{cases}$$

10. Improvement of hinge model as per EC

Improvement of Hinge model as per EC

column

2.1

2.1

Displacemet based Seismic Design of Structures- pg 165

hinge type

PM e PMM

Priestley; Calvi; Kowalsky

none

beam

1.7

17

wall

2

2

column

2.25

2.25

N	ID/	S
\mathcal{N}	ID/	S

beam

-

-

11. Energy result graph & additional damping ratio in time-history analysis results

Improvement of Energy Result Graph : Energy Percentage Result of all step

MIDAS

11. Energy result graph & additional damping ratio in time-history analysis results

Add Additional Damping Ratio of Energy Dissipation System

□ . ~		10. vr. l		-		- 8
	▋ 😂 🗓 🗒 ỗ 🖷 🖪 睅 🏘 🎢 ≌ ≌ 睅 🔬 🌾	* *	a•b A ⊕ @ ₽>		8	
0002	TIME HISTORY ANALYSIS ADDITIONAL DAMPING RATIO ; TIME HISTO)RY LOADCA	ASE NO. = 1			
0004	·		I			
0008 0008 0007 0008	Energy Graph		Additional Damping Ratio (%)			
0009	(1) Dissipated Inelastic Energy [Inealstic Hinge]	Eh	1.196			
0012	(2) Maxwell Damper Energy [Oil Damper]	Em	2.149			
0013	(3) Velocity Dependent Device Energy	Ev	0.000			
0015	(4) Strain Dependent Device [Steel Hyst. Isolator]	Et	2.959			
0018 0019 0020	(5) Isolator Device Energy Total Dampoing Ratio	Eo	4.559			
0021 0022						
0022				1 , Col 10	CAP	NUM
eady			Ln 21 / 21	1 , Col 10	CAP	NUM
■ 0022 ■ 0022 eady	Energy Percentage Tex: Result		Ln 21 / 2	1 , Col 10 Dampine	CAP	NUM
eady	Energy Percentage Text Result Final Step All Step	[N fil	Ln 21 / 21 [Ln 21 / 21 New] Additional I nal step	1 , Col 10 Dampinę	CAP CAP	NUM Result of
eady	Energy Percentage Text Result Final Step All Step Additional Damping Raio Text Result	[N fii	lew] Additional I nal step → Click to displa	1 , Col 10 Damping ay text v	g Ratio vindov	Result of

11. Energy result graph & additional damping ratio in time-history analysis results

Add Additional Damping Ratio of Energy Dissipation System

12. Add reaction table for each step in Pushover

Add Reaction Table for each step in PUSHOVER

Reactions Deformations Forces Stresses Strains	2			FX	FY	FZ		М	
Reaction Forces/Moments	4)°	Load	Step	(N)	(N)	(N)		(N·I	
	1	PO-X(all)	po_0140	334881 358304	-1554840 85599	-4880873	10232	0.0	
Load Cases/Combinations	2	PO-X(all)	po_0140	Records	Activation Di	alog			X
PO-X 🗸	5	PO-X(all)	po_0140						
Step PO Step: 1 🗸	7	PO-X(all) PO-X(all)	po_0140 po_0140	Node or El	ement			_ [Loadcase/Combination
Componente	8	PO-X(all)	po_0140	· .				_	
	9	PO-X(all)	po_0140	All	None	nverse	Prev		DL(ST)po_0140
	10	PO-X(all)	po_0140	NI I	10.0-0	0.454-00.1	004-104		□LL(ST) @po_0141
	11	PO-X(all)	po_0140	Node	1 2 5005	2 45096 1	0210154	+ 1	EX(ST) po_0142
⊖ Mb	12	PO-X(all)	po_0140	Calant Tur					EY(ST)
Local (if defined)	13	PO-X(all)	po_0140	Select Typ	Je			_	EX_PO(ST)
Tune of Display	14	PO-X(all)	po_0140	Element 1	Гуре	\sim	Add		TRX(RS)
	15	PO-X(all)	po_0140	TDUCC				-	
ValuesLegend	10	PO-A(all) PO X(all)	po_0140	BEAM		<u>^</u>	Delete		
Arrow Scale Factor: 1.000000	18	PO-X(all)	po_0140	PLANE ST	TRESS			- 11	
	19	PO-X(all)	po_0140	PLATE		B	eplace		
Annly Close	20	PO-X(all)	po 0140	WALL	0!		•	- 1	
тарлу	21	PO-X(all)	po 0140		Upening	v In	tersect		
	22	PO-X(all)	po_0140					- 11	
	23	PO-X(all)	po_0140						
	24	PO-X(all)	po_0140						
	25	PO-X(all)	po_0140						OK Cancel
	26	PO-X(all)	po_0140	•					
	27	PO-X(all)	po_0140	-761741.962003	297560.345405	371117.7	66236	0.0	
	28	PO-X(all)	po_0140	-3/8013.330894	316478.525536	-151551.5	10801	0.0	Stand Onen Recerde Activation Dieles hav
	29	PO-X(all)	po_0140	-24/941.260380	2097.558199	430720.5	32647	0.0	Step 1. Open Records Activation Dialog box.
	31	PO-X(all)	po_0140	-110245.255001	356154 463707	608703.7	942704	0.0	
	32	PO-X(all)	po_0140	8983 656902	384491 752882	-175947.5	04963	0.0	Stop 2 Salaat Load aasa far nushavar
	45	PO-X(all)	po_0140	465795.493556	51716.628791	164905.8	69632	0.0	Step 2. Select Load case for pushover.
	46	PO-X(all)	po 0140	437153.102811	83820.034923	-156045.8	56362	0.0	
	47	PO-X(all)	po_0140	458257.789619	123466.170823	-100660.3	81189	0.0	Stop 3 Salact Pushovar stop
	48	PO-X(all)	po_0140	423457.694260	152996.515659	-145067.4	06933	0.0	Step 5. Select Fusilovel step.
	49	PO-X(all)	po_0140	436738.166864	194700.383591	-151945.0	13462	0.0	
	50	PO-X(all)	po_0140	397893.204894	218742.613305	-189714.1	80162	0.0	Step 4 Printout Reaction table
	51	PO-X(all)	po_0140	406184.377674	260194.829149	-195658.4	23983	0.0	
	52	PO-X(all)	po_0140	364872.604321	278137.967434	-233734.1	97300	0.0	
	53	PO-X(all)	po_0140	368834.533468	318355.582790	-239336.6	41907	0.0	
	кеа	cuon(C	iobal)	A Reaction(L	ocal) 🔨 Re	action(Lo	ocal-Su	intac	

13. Revit 2020 Interface

Gen-Revit Link

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File

Revit 2020 Gen2020

	Functions	Revit <> Gen
	Structural Column	<>
	Beam	<>
Linear	Brace	<>
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	<>
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
Boundary	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
	Load Nature	>
	Load Case	>
Lood	Load Combination	>
Load	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>

14. Select Inelastic Hinge Result Output in Inelastic time history analysis

- Properties > Inelastic Properties > Inel. Control Data > Select Inelastic Hinge Result Output(Element/General Link)
- Load > Dynamic Loads > Time History Analysis Data > Global Control

14. Select Inelastic Hinge Result Output in Inelastic time history analysis

- Properties > Inelastic Properties > Inel. Control Data > Select Inelastic Hinge Result Output(Element/General Link)
- Load > Dynamic Loads > Time History Analysis Data > Global Control
- Global Control Setting

Inelastic Hinge Status Result

- Check Max/Min result output

15. Improvement in analysis speed for inelastic time history analysis

Reduction of analysis time by optimizing the inelastic time history analysis program and improving the output algorithm for inelastic analysis results

16. Add result summary table of fiber beam, wall for inelastic hinge

Results > Results Tables > Inelastic Hinge > Fiber Beam Summary, Fiber Wall Summary

 Fiber 	Beam Su	ummary												
Element	Section	Mata	rial	Lood		Coll		Mini	mum			М	aximum	
Element	Position	Mater	nai	Load		Cell	٤		Т	ime/Step	-	Ε	Time/St	ер
						М	aximum and Minimu	um Strains at	Each Sectio	n				
					Co	ncrete					St	eel		
Element	Section	Load		Minimum			Maximum			Minimum			Maximum	
			Cell	ε	Time/Step	Cell	3	Time/Step	Cell	٤	Time/Step	Cell	3	Time/Step
1	1-pos	DYNA	212	-1.31090e-003	3.080	2	4.51657e-003	3.090	234	-1.13533e-003	3.080	226	4.34048e-003	3.090
1	2-pos	DYNA	212	-3.65713e-004	2.990	212	6.49857e-004	6.050	234	-3.42752e-004	2.990	234	6.24902e-004	6.050
1	3-pos	DYNA	2	-2.26298e-004	3.100	212	3.83368e-004	2.660	229	-2.16190e-004	3.100	234	3.66219e-004	2.660
2	1-pos	DYNA	212	-4.33781e-004	2.080	212	1.16795e-003	5.950	234	-3.94597e-004	2.080	234	1.12444e-003	5.950
2	2-pos	DYNA	212	-1.60712e-004	2.180	212	4.11072e-004	4.560	234	-1.52268e-004	2.180	234	3.95087e-004	4.560
2	3-pos	DYNA	2	-3.94532e-004	3.060	212	7.49057e-004	3.060	226	-3.59973e-004	3.060	234	7.14507e-004	3.070
3	1-pos	DYNA	224	-2.35641e-004	2.890	212	9.42264e-004	5.950	235	-2.18520e-004	2.890	234	9.07028e-004	5.950
3	2-pos	DYNA	2	-1.55364e-004	3.060	212	2.61186e-004	2.360	226	-1.46279e-004	3.060	234	2.51061e-004	2.360
3	3-pos	DYNA	2	-4.04808e-004	3.020	212	1.01659e-003	3.030	226	-3.62026e-004	3.020	234	9.73654e-004	3.030
\Fiber E	Beam Su	mmary /						<						

Fiber Wall Summary

Story	WalLD	Section	Mata	rial	Load		Coll		Mini	mum			M	aximum	
Story	Wall ID	Position	mater	Iai	Luau		Cell	3		Ti	me/Step	ŧ		Time/Ste	ер
							Maximur	n and Minimum Stra	ains at Each	Section					
						Co	ncrete					Ste	eel		
Story	Wall ID	Section	Load		Minimum			Maximum			Minimum			Maximum	
				Cell	3	Time/Step	Cell	3	Time/Step	Cell	3	Time/Step	Cell	ε	Time/Step
1F	1	1-pos	DYNA	1	-9.39160e-004	2.680	15	2.81189e-001	2.680	17	-7.11083e-004	2.360	24	2.80383e-001	2.680
1F	1	2-pos	DYNA	1	-8.67644e-004	2.680	15	1.67658e-001	2.680	17	-7.19437e-004	2.450	24	1.67176e-001	2.680
1F	1	3-pos	DYNA	1	-6.64995e-004	2.680	15	6.16266e-003	2.680	17	-6.45485e-004	2.680	24	6.14315e-003	2.680
1F	1	4-pos	DYNA	1	-4.82424e-004	2.680	15	2.32626e-003	2.680	17	-4.74398e-004	2.680	24	2.31824e-003	2.680
1F	1	5-pos	DYNA	1	-4.11744e-004	2.680	15	1.77338e-003	2.680	17	-4.05500e-004	2.680	24	1.76714e-003	2.680
2F	1	1-pos	DYNA	1	-4.08757e-004	2.680	15	1.77946e-003	2.660	17	-4.02511e-004	2.680	24	1.77321e-003	2.660
2F	1	2-pos	DYNA	1	-3.63986e-004	2.680	15	1.50301e-003	2.660	17	-3.58657e-004	2.680	24	1.49767e-003	2.660
2F	1	3-pos	DYNA	1	-2.97825e-004	2.680	15	1.15894e-003	2.660	17	-2.93668e-004	2.680	24	1.15478e-003	2.660
2F	1	4-pos	DYNA	1	-2.47810e-004	2.680	15	9.54822e-004	2.660	17	-2.44377e-004	2.680	24	9.51387e-004	2.660
2F	1	5-pos	DYNA	1	-2.21425e-004	2.680	15	8.47144e-004	2.660	17	-2.18374e-004	2.680	24	8.44092e-004	2.660
3F	1	1-pos	DYNA	1	-2.19067e-004	2.680	15	8.53079e-004	2.670	17	-2.16011e-004	2.680	24	8.50018e-004	2.670
3F	1	2-pos	DYNA	1	-1.99154e-004	2.680	15	7.72331e-004	2.670	17	-1.96387e-004	2.680	24	7.69557e-004	2.670
3F	1	3-pos	DYNA	1	-1.62067e-004	2.690	15	6.20154e-004	2.690	17	-1.59832e-004	2.690	24	6.17919e-004	2.690
		mon (1						

|\Fiber Wall Summary/

Unbraced Length of Beam bracing

Beam bracing

Bea	am / Base umn Plate • C	Bolt Connect	Crane Purlin Girder / Girth O	Web pening	Stair	Unbrao Leng	ced Brath Stre	ace ngth Sti	Link Beam ffener Strength							
			Steel				Seism	ic Desig	n Tool							
Un	braced Length	h					-		- 5				-			
				Section						1			Unbraced I	Length		
нк	Shape	Use DB	Name	Size1	Size2	Size3	Size4	Size5	Size6	Li Re:	ateral Force sisting System	Fy (MPa)	Es (MPa)	ry (mm)	Lb (m)	
7	H Section	1	H 400x200x8/13	400.00	200.00	8.00	13.00	16.00	- SS275	Special Mom	ent Frames	275.00	210000.00	45.40	2.98	<
-	H Section	1	H 450x200x9/14	450.00	200.00	9.00	14.00	18.00	- SS275	Intermediate	Moment Frames	275.00	210000.00	44.00	5.71	< - 1
7	H Section	•	H 496x199x9/14	496.00	199.00	9.00	14.00	20.00	- SS275	Intermediate	Moment Frames	275.00	210000.00	42.70	5.54	
~	H Section	2	H 500x200x10/16	500.00	200.00	10.00	16.00	20.00	- SS275	Intermediate	Moment Frames	275.00	210000.00	43.30	5.62	-
			ze Column			1	C	trl+Up/D	ονιη/το Copy							
A	ISC 34	1-1	6				0	trl +Up/D	own to Copy	/	Ка	orean	code			
A	(c)	1-1 Beam	6 h bracing shall h	have a r $L_b =$	naximı 0.19 <i>r</i> y	1m sp E/(Ry	cing ry)	of	οιηγίο Copy	(D1-2)	Ko	orean ermedic →Lb=	code ated Ma 0.17ry E	omen E/Fy	t	
A	(c)	1-1 Beam where ry	6 h bracing shall h e = radius of gyr	have a r $L_b =$	naximu 0.19r _y	um sp E/(Ry axis,	contracting Fy)	of Im)	οιηγία Copy	(D1-2)	Ko Int Spe	orean ermedic → Lb = i	Code ated Ma 0.17ry E oment F	omen E/Fy Trame	t	
A	(c) 1 (c) 1 (<i>Ry</i> = 1.)	1-1 Beam where ry	6 h bracing shall h e , = radius of gyr <i>ually. Whel</i>	have a result $L_b =$ ation a	naximu 0.19 <i>ry</i> bout y-	um sp e/(Ry axis, A/S	acing Fy) in. (m SC is	of m) the	same as Ko	(D1-2)	Ko Int Spo	orean ermedic →Lb= ecial Mc →Lb=	code ated Ma 0.17ry E oment F 0.085ry	omen E/Ex Trame E/Ex	t s	

MIDAS

4.

Brace Strength (Beam)

1b. Point Bracing

strength of end and intermediate point braces is

and, the required stiffness of the brace is

where

- L_{br} = unbraced length adjacent to the point brace, in. (mm)
- M_r = largest of the required flexural strengths of the beam within the unbraced lengths adjagent to the point brace using LRFD or ASD load combinations, kip-in. (N-mm)

When the unbraced lengths adjacent to a point brace have different M_r/L_{br} values, the larger value shall be used to determine the required brace stiffness.

For intermediate point bracing of an individual beam, L_{br} in Equations A-6-8a or A-6-8b need not be taken less than the maximum effective length, L_b , permitted for the beam based upon the required flexural strength, M_r .

Brace Strength (Beam)

Flexural strength of beam (it is defined by the user)

Link Stiffener Design

n 👔 🖬 🖿 🔚 🕁 ד 🕁 ד 🚮 🖫 ד

9.1-75

4. Link Stiffeners for I-Shaped Cross Sections

Full-depth web stiffeners shall be provided on both sides of the link web at the diagonal brace ends of the link. These stiffeners shall have a combined width not less than $(b_f - 2t_w)$ and a thickness not less than the larger of $0.75t_w$ or $\frac{1}{2}$ in. (10 mm), where b_f and t_w are the link flange width and link web thickness, respectively.

Links shall be provided with intermediate web stiffeners as follows:

- (a) Links of lengths $1.6M_p/V_p$ or less shall be provided with intermediate web stiffeners spaced at intervals not exceeding $(30t_w d/5)$ for a link rotation angle of 0.08 rad or $(52t_w d/5)$ for link rotation angles of 0.02 rad or less. Linear interpolation shall be used for values between 0.08 and 0.02 rad.
- (b) Links of length greater than or equal to $2.6M_p/V_p$ and less than $5M_p/V_p$ shall be provided with intermediate web stiffeners placed at a distance of 1.5 times b_f from each end of the link.
- (c) Links of length between 1.6M_p/V_p and 2.6M_p/V_p shall be provided with intermediate web stiffeners meeting the requirements of (a) and (b) in the preceding.

Intermediate web stiffeners shall not be required in links of length greater than $5M_p/V_p$.

Seismic Provisions for Structural Steel Buildings, July 12, 2016 American Institute of Steel Construction

Sect. F3.]

ECCENTRICALLY BRACED FRAMES (EBF)

Intermediate web stiffeners shall be full depth. For links that are less than 25 in. (630 mm) in depth, stiffeners shall be provided on only one side of the link web. The thickness of one-sided stiffeners shall not be less than t_w or $\frac{1}{2}$ in. (10 mm), whichever is larger, and the width shall not be less than $(b_f/2) - t_w$. For links that are 25 in. (630 mm) in depth or greater, intermediate stiffeners with these dimensions shall be provided on both sides of the web.

Link Stiffener Design

2. Anchor bolt module as per ACI

RC > Anchor Bolt

- Applied Code : ACI318-14(M),11(M),08(M),NSR-10
- Spacing, Tensile, ShearStrength, Combined Ratio Check for Post-Installed / Cast-In-Place Anchor Bolt

2. Anchor bolt module as per ACI

Procedure of Anchor Bolt Design

	Section	
Section Force A	Anchor Lavout	
Material		
Concrete	27	▼ MPa
Anchor Bolt	KS-B-1016-4	.6
Light Weight C	oncrete	
Factor	1	-
Plate Section		
Left	80.00	mm
Right	80.00	mm
Тор	80.00	mm
Bottom	80.00	mm
Thickness	6.00	mm
RC Section		
Orack	O Uncrack	
🗸 Left	120.00	mm
Right	120.00	mm
📝 Тор	120.00	mm
Bottom	120.00	mm
Thickness	500.00	mm
Grout	5.00	mm

Step 1. Define concrete, Anchor bolt material and element information.

UI	LE	

Section	Force	Anchor Layout	
Force			
Axial		500.00	kN
Momen	it (x)	10.00	kN.m
Momen	it (y)	20.00	kN.m
Shear	(x)	30.00	kN
Shear	(y)	40.00	kN
Torsion	n	5.00	kN.m
		Load Combinations (1)	

Step 2. Define Force Data. (Axial,Moment,Shear,Torsion)

ection Force Ancho	r Layout	
Anchor		
Install Type	Cast-In-Place	Anchor I 🔻
Anchor Type	Headed Stud	-
Diameter	M12	-
Length (hef)	180.00	mm
Pullout Strength (Np)	30.00	kN
Dist. of J/L-Bolt (eh)	30.00	mm
Strength Reduction Fa	ctor	
Concrete, Tension	0.650	•
Concrete, Shear	0.750	-
•	0.750	-
Anchor, Tension	0.750	•
Anchor, Shear	0.000	•
Design		
Breakout Strength Coe	efficient (kc)	
	10,000	

Anchor

Step 3. Define Anchor Bolt information.

Cast-In-Place Anchor: Headed Stud/Headed Bolt/Hooked Bolt(L/J) Post-Installed Anchor:

Expansion(Torque,Displacement),Undercut,Adhesive anchors

Layout

Section Force	Anchor Layout	
ayout Type	Grid Type	Ŧ
Space (Int. x)	130.00 🚔 mm	
Space (Int. y)	100.00 mm	
Space (Ext. x)	100.00 mm	
Space (Ext. y)	100.00 mm	
Num. of Row	3	
Num. of Col	2	

Step 4.

Define the layout type & spacing Number of Anchor bolt.

2. Anchor bolt module as per ACI

Summary Calculation Report

Catagony	Value	Critoria	Datio	Noto
Category	Value	70.00	Ratio	Note
Minimum spacing of anchors (mm)	100	72.00	0.720	Sreq / Smin
Limit of embedment death (mm)	-	-	-	-
Limit of embedment depth (him)	-	-	-	-
) Tensile strength				
Category	Nue	Nn	N _{ua} / (ø N _n)	Note
Steel strength* (kN)	0.000	33.72	0.000	ø = 0.750
Concrete breakout strength** (kN)	0.000	0.000	0.000	ø = 0.650
Pullout Strength* (kN)	0.000	50.38	0.000	ø = 0.650
Concrete side-face blowout strength** (kN)	-	-	-	-
* anchor having the highest loading				
** anchor group (anchors in tension)				
) Shear strength				
Category	Vus	Vn	V _{us} / (øV _n)	Note
Steel strength* (kN)	Vus 8.333	Vn 26.98	Vus/(øVn) 0.475	Note ø = 0.650
Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN)	Vua 8.333 15.00	Vn 26.98 41.67	Vus / (øVn) 0.475 0.480	Note ø = 0.650 ø = 0.750
Category Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN)	Vus 8.333 15.00 13.33	Vn 26.98 41.67 34.73	Vus / (ø Vn) 0.475 0.480 0.512	Note ø = 0.650 ø = 0.750 ø = 0.750
Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN)	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73	Vus/(øVn) 0.475 0.480 0.512	Note ø = 0.650 ø = 0.750 ø = 0.750
Category Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73	Vus/(sVn) 0.475 0.480 0.512 -	Note Ø = 0.650 Ø = 0.750 Ø = 0.750
Category Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors)	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73 -	Vus/(øVn) 0.475 0.480 0.512	Note ø = 0.650 ø = 0.750 ø = 0.750 -
Category Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors) Combined Ratio	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73 -	Vus/(øVn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 ø = 0.750 –
Category Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors) Combined Ratio Category	Vua 8.333 15.00 13.33 - Value	Vn 26.98 41.67 34.73 -	Vus / (ø Vn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 - Note

Detail Calculation Report

Calculation Summary (Required edge d	stances spacings and thicknesses	to preclude splitting failure)
(1) Minimum center-to-center spacing of an	stances, spacings, and unchildsses hors	to providuo apritting idilulo)
Smin	Sreq	s _{reg} / s _{min}
100mm	72.00mm	0.720
• s . = 100mm		
• Swa = 6 da = 72 00mm		
• s _{ma} = 100mm ≥ s _{ma} = 72.00mm →	ок	
(2) Check Distance from Concrete Edge to C	enter of Anchor Bolt	
Post-installed anchors only.		
(3) The limitations on the value of her		
Expansion or undercut post-installed a	nchors only.	
(4) The critical edge distance (cac)	*	
Post-installed anchors only.		
13. Calculate Shear Strength	ing 1	
(4) Sheal atraanth	ing)	
(1) Steer strength		
(2) Puriou Strength		
(3) Concrete Dreakout strength		
Calculation Summary (Shear Strength)		
(1) Calculate Strength of Steel		
[KDS 14 20 54 : 2016, See. 4.4.1, ref.)	ACI 318-14 17.5.1 J	
• Ø = 0.650	10-	
 Iuta = IIIII(Iuta, 1.51ya, 000.0) = 4000 A = 94.20mm² 	IFA	
For cast in headed stud enchor		
 V = 0.0 f. = 33.72kN (n = 1) 		
 Vsa = II Ase, V luta = 33.72 km (II = 1) Where enchance are used with built up. 	arout and	
 V'as and = 0.8 Vas = 26.98kN 	grout paus	
 V sagrout = 0.0 Vsa = 20.0000 V s/(aV) > 0.475 < 10 > 0.6 		
(2) Calculate Concrete Break-Out Strength		
[KDS 14 20 54 · 2016 See 4.4.2.]		
• a = 0.750		
• d- = 12.00mm		
- 4 000		
 A = 1 000 		
 Λ = 1.000 Where L is the load hearing longth of 	the enchor for cheer	

