Release Note

Release Date : August. 2019

Product Ver. : midas Gen 2020 (v1.1) and Design+ 2020 (v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1)	Non-Dissipative Element Design as per NTC2018	4
2)	Enhancement of Stability coefficient table as per NTC 2018	9
3)	Added Spectrum as per NTC 2018 in Static seismic load & Response Spectrum	10
4)	Added user input for " <i>qo</i> " in RC design setting as per EC2	11
5)	Added "Update Rebar Option" in shell/slab/wall design	12
6)	Improvement of graphic report for column design	13
7)	Specify Moment-Rotation Hinge Properties with multi curve	14
8)	Added name box in thickness properties.	15
9)	Bilinear type spring stiffness for surface spring support	16
10)	Force/Stress contouring based on center value of plate elements	17
11)	Added "Node" icon in tool bar	18

• midas Design+

1) Added moment bolt connection as per AISC	20
---	----

In NTC 2018

midas Gen

NTC18 7.2.2. CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI

COMPORTAMENTO STRUTTURALE

Le costruzioni soggette all'azione sismica, non dotate di appositi dispositivi d'isolamento e/o dissipativi, devono essere progettate in accordo con uno dei seguenti comportamenti strutturali:

a) comportamento strutturale non dissipativo,

oppure

b) comportamento strutturale dissipativo.

7.4. COSTRUZIONI DI CALCESTRUZZO

7.4.1. GENERALITÀ

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature deve essere valutata in accordo con le regole di cui al § 4.1, senza nessun requisito aggiuntivo, a condizione che in nessuna sezione si superi il momento resistente massimo in campo sostanzialmente elastico, come definito al § 4.1.2.3.4.2. Per i nodi trave-pilastro di strutture a comportamento non dissipativo si devono applicare le regole di progetto relative alla CD "B" contenute nel § 7.4.4.3. Per le strutture prefabbricate a comportamento non dissipativo si devono applicare anche le regole generali contenute nel § 7.4.5.

Non-Dissipative Element Design (NDED)

$$M'_{yd} > M_{Ed}$$

M[']_{vd} : Bending resistance in elastic status

 $M_{\rm ed}$: Design bending moment by elastic load combinations

NTC18 7.2.2.

Buildings subject to seismic action, not equipped with appropriate insulation and / or dissipative devices, must be designed in accordance with one of the following structural behaviors: a) non dissipative structural behavior,

or

b) dissipative structural behavior.

NTC18 7.4.1.

In the case of non-dissipative structural behavior, the capacity of the members must be evaluated in accordance with the rules set out in § 4.1, without any additional requirements, provided that in no section does the maximum moment of resistance in a substantially elastic field be exceeded, as defined in § 4.1.2.3.4.2. For beam-column Joint of structures with non-dissipative behavior, the design rules relating to CD "B" contained in § 7.4.4.3 must be applied. For prefabricated structures with non-dissipative behavior, the general rules contained in § 7.4.5 must also be applied.

Flowchart of Non-dissipative Elements Design

** This release version is supporting only a beam, columnn and wall member in code checking

Procedure of Non-Dissipative Element Design (NDED) – Response Spectrum

Define Inelastic material model	Create seismic load for NDED	Generate load combination for NDED	Design Setting for NDED
Material Data	Spectrum Load Case	Automatic Generation of Load Combinations	Concrete Design Code
General Material ID 3 Name C30/37	Load Case Name: Rx_elatic design Direction : X-Y	Option	Design Code : Eurocode2:04
Elasticity Data Type of Design Concrete Stendard	Auto-Search Angle Major Ortho	Code Selection Steel Concrete SRC	National Annex : Italy
D8 Product *	Excitation Angle : 0 r[[deg]] Scale Factor : 1	Cold Formed Steel Footing Aluminum	Apply NIC <u>NTC 2018</u> V Apply Special Provisions for Seismic Design ···
Type of Material	Period Modification Factor :	Design Code : Eurocode2:04 National Annex : Italy	Strut Angle for Shear Resistance : 45 Deg Effective Creep Ratio (Phi_ef) : 2.143
Isotropic Orthotropic D8 C30/37	Modal Combination Control	Scale Up of Response Spectrum Load Cases Scale Up Factor : 1 Rx_elatic de:	Slenderness Limit Lambda_Jim = 25/sgrt(n)
Plasticity Data Plastic Material Name NONE Inelastic Material Reporting for Fiber Model	Spectrum Functions	Factor Load Case Add Modify	Where, n = N_Ed/(Ac*fcd)
Thermal Transfer Therm	rties Supporting Only Design spectr	rum	Beam-Column Joint Design Gamma_rd 1.1
Specific Heat 0 3/W [F] Heat Conduction : 0 3/mmthr/[F]	Apply Damping Method	Create load combination for N	DED SUM(M_Rc) > 1.3 *SUM(M_Rb)
Damping Ratio : 0.05 OK Cancel Accely	Correction by Damping Ratio	Generate Additional Load Combinations for Non-Dissipative OK Cancel	Select Ductility Class CD'A' (High Ductility) CD'A' (High Ductility) CD'B' (Medium Ductility)
stress ↑(compression) Concrete	Create Seismic load for NDED	Description ^ LoadCase Factor 00 + 1.0(0.3L) + 1.0E Rx. elatic design(NRS) 0.3000	Non-Dissipative Element Non Diss.
	Image: Non-Dissipative 1.2 Description : 4	100 1.000 3.1.0E DL(ST) 1.0000 100 1.000 1.000 1.000 1.000 ERN 100 + (101L) Sy edite design(NRS) ▼ 1.000 ERN 100 + (101L) Rx edite design(NRS) ▼ 1.000	Define Non dissipative element Beam 1.2 Column 1.3 Well 1.2
	LoadCase Direction Scale d Scale Scale	SERV. 1.00 + (1.0LL) - cLCB2(CBC) 1.30 + 1.5(1.0LL) + 1.5(0.6)WX SERV. 1.00 + (1.0LL) - cLCB3(CBC) 1.30 + 1.5(1.0LL) + 1.5(0.6)WX SERV. 1.00 + (0.7LL) + cLCB4(CBC) 1.30 + 1.5(0.7LL) + 1.5VX	Friction Coefficient for Wall Silding : 0.6
ε _{peak} ε	Ry_elatic d X-Y 1 d S d S d S	SERV_1100 + (0,7LL) + cLC56(CBC) 1.30 + 1.5(0,7LL) + 1.5WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E SERV_1100 + (0,7LL) - cLC56(CBC) 1.30 + 1.5(1,0LL) - 1.5(0,6)WY E	Moment Redistribution Factor for Beam : 1 Consider Shear Strength of Concrete for Checking
σ _(tension) Rebar	24 LLCD24 Service Part S 25 LCD25 Service Add S 26 LCD26 Service Add S 27 LCD27 Service Add S 27 LCD26 Service Add S	BERV_100+0.5LL] cLCB9(CBC) 1.30+1.50 7LL)-1.5WY BERV_100+0.3LL]+ cLCB10(CBC) 1.00+1.00 3L)+1.0EX BERV_100+0.3LL]+ cLCB11(CBC) 1.00+1.00 3L)+1.0EY BERV_100+0.3LL]- cLCB12(CBC) 1.00+1.00 3L)+1.0EY BERV_100+0.3LL]- cLCB12(CBC) 1.00+1.00 3L)+1.0EX BERV_100+0.3LL]- cLCB12(CBC) 1.00+1.00 3L)-1.0EX	V Wall V Column/brace V Beam
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	28 cLO288 starting Add 5 ≥ 29 1 Institute 30 2 Strength/Stress ★ Serviceability Special	ERV (100+(0.31)	
(tension)	Copy Protection Active Strength (Elastic)	Spread Sheet Form	
	File Name: D:₩06_출시관련₩00_Gen₩hon dissipativ	eWverificatic Browse Make Load Combination Sheet Close	

Procedure of Non-Dissipative Element Design (NDED) – Static Seismic Load

Meterial Data General Waterial Data Waterial Data Waterial Data Waterial Data With Baterial Data
<pre></pre>

Design Result of Non--Dissipative Element Design (NDED) : Supporting only Design Checking

rocode2:	4 RC-E	leam Che	cking Result	Dialog																										
ode : Eur orted by	Code 2: Me	04,NTC201 mber operty	.8 Uni Results	: kN Streng	, m h ability	Primary	Sorting Op	n tion MEMB																						
			1 2 2 1	1	T =									. 1				27			_									
MEMB	SE	Section	fck	20	Re	bar	Neg	ative M	oment Stre	ngth	Po	sitive Mo	oment Streng	th			She	ar Stren	gth					Eli	astic Mo	ment Ca	pacity			
MEMB SECT Span	SE	Section Bc Hc bf hf	fck fyk fyw	20 S СНІ	Re AsTop	bar AsBot	Neg N(-) M_Ed	LC B	oment Stre x/d N(- M_R	igth Rat-N	Po P(+) M_Ed	LC B	oment Streng x/d P(+) M_Rd	th Rat-P	V_Ed	LC B	She V_Rdc	ear Stren V_Rds	gth Rat- Vc	Rat- Vs	Rat-\	Seis. Class	N(-) M.Ed	El: LC B	astic Mo N(-) M'.yd	ment Ca Rat-N	pacity P(+) M.Ed	LC B	P(+) M'.yd	Rat-f
MEMB SECT Span 0	SE L tr	Section Bc Hc bf hf avi in altez:	fck fyk fyw z 20000.0	20 S Сні	Re AsTop 0.0006	AsBot	N(-) M_Ed 53.3142	ative M LC B 10	oment Stre x/d N(- M_R 0.09 108.9	ngth 1 Rat-N 18 0.49	Po: P(+) M_Ed 26.6571	LC B	oment Streng x/d P(+) M_Rd 0.09 108.928	Rat-P	V_Ed	LC B	She V_Rdc 57.9545	var Stren V_Rds 237.749	Rat- Vc 0.86	Rat- Vs 0.21	Rat-\ 0.86	Seis. Class N.D.	N(-) M.Ed 21.849	LC B 19	Astic Mo N(-) M'.yd 98.401	Rat-N 0.22	P(+) M.Ed	LC B 19	P(+) M'.yd 98.401	Rat-
MEMB SECT Span 0 2	SE L tri	Section Bc Hc bf hf aviin altez: 300 0.500	fck fyk fyw z 2000.0 450000	РО S СНІ I ОК M ОК	Re AsTop 0.0006 0.0006	bar AsBot 0.0006 0.0006	N(-) M_Ed 53.3142 17.2613	LC B 10	oment Stre k/d N(- M_R 0.09 108.9 0.09 108.9	ngth 1 Rat-N 8 0.49 8 0.16	Po: P(+) M_Ed 26.6571 19.2975	LC B 10 6	oment Streng x/d P(+) M_Rd 0.09 108.928	th Rat-P 0.24 0.18	V_Ed 50.0967 64.6646	LC B 2 5 11 5	She V_Rdc 57.9545 57.9545	ear Stren V_Rds 237.749 87.1748	0.86	Rat- Vs 0.21 0.74	Rat-\ 0.86 0.74	Seis. Class N.D. N.D.	N(-) M.Ed 21.849 21.849	El: LC B 19	N(-) M'.yd 98.401 98.401	Rat-N 0.22 1 0.22 1	P(+) M.Ed 10.925	LC B 19 19	P(+) M'.yd 98.401 98.401	Rat-

Graphic Report

Detail Report

LCB M E	- 19 d - 21.85	kN-n.	prov	rung ti	ie da		wom	ient-	Curva	ature
No.	Conc.Strain	N.A.Depth	Bar.Strain	Curvature	Nonent					
1	0.000000	8.888888	8.88888	8.888888e+888	8.88					
2	8.080819	8.118983	-0.000055	1.558238e-884	4.68					
3	0.000074	0.119284	-0.000219	6.232919e-084	18.69					
4	0.000108	0.119937	-0.000491	2 8931680-083	41.95					
6	0.000454	0.116579	-0.001377	3.895574e-083	186.76	11				
7	0.000541	8.896399	-0.002096	5.689627e-883	108.61	12				
8	8.888629	8.882425	-8.882959	7.635326e-003	118.17					
9	0.000721	0.072273	-0.003966	9.97267@e-083	111.61	11				
10	0.000816	0.064635	-0.805116	1.262166e-082	113.02	12				
12	0.000916	0.058800	-0.0000107	1.5582388-882	114.47	10				
13	0.001135	0.050576	-0.009411	2.243851e-002	117.50	11				
14	8.881256	8.847691	-8.811121	2.633488e-882	119.25					
15	8.881383	8.845274	-8.812972	3.054138e-082	121.02	1.1				
16	0.001520	0.043361	-0.014958	3.506017e-002	122.90	11				
17	0.001667	0.041782	-8.817882	3.9890580-882 h E0338ho-002	124.88					
19	0.001989	0,039403	-0.021739	5.048664e-002	129.14	11				
28	0.802288	8.848531	-8.824159	5.625289e-882	138.34	12				
21	8.882593	8.841687	-8.826781	6.232919e-082	131.78					
22	0.002803	0.040797	-0.029494	6.871793e-002	134.24	12				
23	0.003153	0.041802	-0.032294 -0.035355	r.5418320-002 8 2538350-882	130.04					
25	9.093771	0,942917	-9.038413	8,9754030-002	140.91	11				
26	0.004031	0.041394	-0.841742	9.738936e-002	143.81	12				
27	8.884383	0.040850	-0.845285	1.053363e-001	146.83					
28	8.886828	8.852999	-8.847369	1.135949e-001	147.46					
29	0.007101	0.058129	-0.050316	1.2210520-001	149.50					
31	8.816899	0.114795	-8.849814	1.4824876-881	144.95					
32	0.020029	0.133753	-0.050352	1.497459e-001	144.54					
33	8.822874	8.143353	-8.852121	1.595627e-001	145.56					
34	8.826749	8.157636	-0.053005	1.696912e-001	145.99					
35	0.027590	0.153166	-0.057072	1.8013140-001	149.00					
30	0.031052 8.835598	8 17625h	-0.058053	2 8198660-881	158.69	10				
38	8.838592	0.180909	-8.861669	2.133217e-001	152.53	11				
39	8.842744	8.189965	-0.863818	2.250084e-001	153.88	10				
48	8.886874	8.829882	-0.184528	2.378867e-881	8.29	12				
H'_ (). Check Rat	yd - 98.%H ratio of elastic _N(E) - M_Ed / H	B kN-n. Roment capacity _yd = 0.221	2 < 1.000	-> 0.K.		ا لح				

2. Enhancement of Stability coefficient table as per NTC 2018

[7.3.3]

About NTC18 chap. 7.3.1 – (this is to consider in wishlist)

Effetti delle non linearità geometriche

Le non linearità geometriche sono prese in conto attraverso il fattore θ che, in assenza di più accurate determinazioni, può essere definito come:

$$\theta = \frac{\mathbf{P} \cdot \mathbf{d}_{\mathbf{Er}}}{\mathbf{V} \cdot \mathbf{h}}$$

dove:

- P è il carico verticale totale dovuto all'orizzontamento in esame e alla struttura ad esso sovrastante:
- d_{ER} è lo spostamento orizzontale medio d'interpiano allo *SLV*, ottenuto come differenza tra lo spostamento orizzontale dell'orizzontamento considerato e lo spostamento orizzontale dell'orizzontamento immediatamente sottostante, entrambi valutati come indicato al § 7.3.3.3;
- V è la forza orizzontale totale in corrispondenza dell'orizzontamento in esame, derivante dall'analisi lineare con fattore di

h è la distanza tra l'orizzontamento in esame e quello immediatamente sottostante.

Gli effetti delle non linearità geometriche:

- possono essere trascurati, quando θ è minore di 0,1;
- possono essere presi in conto incrementando gli effetti dell'azione sismica orizzontale di un fattore pari a 1/(1-θ), quando θ è compreso tra 0,1 e 0,2;
- devono essere valutati attraverso un'analisi non lineare, quando θ è compreso tra 0,2 e 0,3.

Il fattore θ non può comunque superare il valore 0,3.

					Modified Story		Stability			P-Delta Incremental
		Story Height	Vertical Load	Story Shear Force	Drift	Beta	Coefficient			Factor
Load Case	Story	(m)	(kN)	(kN)	(m)	(Beta)	(Theta)	Allowable Limit	Remark	(ad)
Cd=1, le=1,	Scale Factor=	2.5								
SLVx(RS)	5F	3.2	26503.4572	646.7074	0.0186	1	0.2384	0.3	P-Delta Direct Analysis	
SLVx(RS)	4F	3.2	43667.3343	994.4165	0.0208	1	0.2859	0.3	P-Delta Direct Analysis	
SLVx(RS)	3F	3.2	60831.2115	1267.5691	0.0202	1	0.3257	0.3	Redesign	
SLVx(RS)	2F	13.2	88294.3753	1658.6257	0.0521	1	0.1802	0.3	P-Delta Increment	1.2662
SLVx(RS)	1F	3.2	105458.2525	1690.8036	0.003	1	0.0583	0.3	OK	1
									Λ	

- If "Theta" is less than 0.1, "O.K" is printed
- If "Theta" exceeds 0.1 and is less than 0.2, "P-Delta Increment" is printed
- If "Theta" exceeds 0.2 and is less than 0.3, "P-Delta Direct Analysis" is printed
- If "Theta" exceeds 0.3, "Redesign" is printed

3. Added spectrum as per NTC 2018 in static seismic Load & response spectrum

LUGU Case IN	ame ,	LA					
Seismic Load	Code :	NT	C2018			•	
Description :							
Seismic Loa	id Parame	ters					
Ground Ty	/pe:			В			•
Spectrum	Paramete	ers	0	TA (
011	012	013	0	14 () Use	er Define	
1.00	actor(S)	0.14	D	0.42		1.62	
1.20		0.14		0.42		1.05	
Maximum H	lorizontal	Acc. (a	g)		0.0	3	ç
Behavior F	actor (q)	:			1.5		
Amplificatio	n Factor	(Fo)			2.5		
Period of c	onstant H	lori.Acc.	(Tc*)	E C	0.3		
Fundamer	ntal Period	1:	0.97	87	0.9	9787	
Seismic Loa	d Directio	n Facto	r (Sca	le Facto	vr)		
X-Direction	; 1		Y	-Directi	on :	0	
Accidental	Eccentrici	ty					
X-Direction	(Ex) :	Po:	sitive	O Ne	gativ	e 🔘 I	lone
Y-Direction	(Ey) :	Po:	sitive	© Ne	egativ	e ©1	lone
Torsional A	mplificatio	n					
Acciden	tal Eccent	tricity	1	Inhe	rentl	Eccentric	ty
Additional S	Seismic Lo	ads (Un	it:N,m	m)			
	AddX	Ad	dY	Add.	RZ		Add
Story			22.0622	and the set	NAME:		01000

MIDAS

4. Added user input for "*qo*" in RC design setting as per EC2

- Definition of "qo" by user
- Design considering "qo" for irregular structures

lesign Code : Eurocode2:04 💌	Structure Information
National Annex : Italy Apply NTC Apply Special Provisions for Seismic Design Strut Angle for Shear Resistance : 45 Deg	Structure Type : Frame System Behavior Factor (q) Calculate by Program Alpha_u / Alpha_1 : 1.1
Effective Creep Ratio (Phi_ef) : 2.143	User Input
Slenderness Limit	q 1.5 qo 4.5
Lamboa_um = 25/sqrt(n) Where, n = N_Ed/(Ac*fcd)	Elastic Response Spectrum
	Line Line
Beam-Column Joint Design Gamma_rd 1.1	Spectrum Parameters
Strong Column Weak Beam	Soil Factor (S) Tb Tc Td
Consider strong column-weak beam on last floor	1.2 0.15 0.5 2
Select Ductility Class	Ref. Reak Ground Acc. (AgR) : 0.08
CD'A' (High Ductility) ONOn-Dissipative (Low Ductility)	Importance Factor(I):
CD'B' (Medium Ductility)	Viscous Domoine Dotte (vi) . 5
Non-Dissipative Element Non Diss.	viscous Damping Raud (xi) :
Secondary Seismic Element	
Shear Force for Design (Gamma_rd)	OK Cancel
Beam 1.2 Column 1.3 Wall 1.2	
Friction Coefficient for Wall Silding : 0.6	
Torsion Design	
Moment Redistribution Factor for Beam : 1	
Consider Charge Charge the of Conservate free Chargeline	

Eurocod 08. Table 5.1

 $q=q_{\rm o}k_{\rm w}\geq 1,5$

Table 5.1: Basic value of the behaviour factor, q_0 for	or systems reg	ular in elevatio
STRUCTURAL TYPE	DCM	DCH
Frame system, dual system, coupled wall system	3.0 au/an	4,5 a/a
Uncoupled wall system	3,0	$4.0 \alpha_0/\alpha_1$
Torsionally flexible system	2,0	3,0
Inverted pendulum system	1,5	2,0

(3) For buildings which are not regular in elevation, the value of q_o should be reduced by 20% (see **4.2.3.1(7)** and Table 4.1).

5. Added "Update Rebar Option" in shell/slab/wall design

• Update rebar arrangement by sub-domain & by elements

Added methods to input rebar information

6. Improvement of graphic report for column design

Printout shear design result for each direction in graphic report (RC column)

Midas Gen 2019 v2.2			
5. Shear Force Capacity Ch	eck (End)		
Applied Shear Force Design Shear Strength Shear Ratio Joint Shear Ratio	Vu φVc+φVs Vu/φVn Vhj/φVnj	= 198.243 kN (Load Cor = 276.331 + 842.734 = 11 = 0.177 < 1.000 O.K = 0.00000 / 0.00000 = 0	nbination : 16) 19.06 kN (As-H_req = 0.00053 m²/m, 2-P10 @30) .000 < 1.000 O.K
6. Shear Force Capacity Ch	eck (Midd	le)	
Applied Shear Force Design Shear Strength Shear Ratio	Vu φVc+φVs Vu/φVn	= 198.243 kN (Load Cor = 277.275 + 210.684 = 48 = 0.406 < 1.000 O.K	mbination:16) 7.959 kN (As-H_req = 0.00053 m²/m, 2-P10 @120)
Midas Gen 2020 v1.1			-
3. Design for Shear			
[END] Applied Shear Force (V_Ed) Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) Shear Ratio (V_Ed/V_Rdmax) Shear Ratio Asw-H_req	y: 3 (1 39639.0 39639.0 39639.0 39639.0 0.090 < 0.0039) 5 N 6 / 438445 = 0.090 6 / 837475 = 0.047 6 / 1716750 = 0.023 1.000 O.K 3 mm²/m, 2-P10 @40	z : 9 (I) 35434.7 N 35434.7 / 437307 = 0.081 35434.7 / 991141 = 0.036 35434.7 / 1741500 = 0.020 0.081 < 1.000 O.K 0.00393 mm ² /m, 2-P10 @40
[MIDDLE]	y: 10 ((1/2)	z : 10 (1/2)
Applied Shear Force (V_Ed) Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) Shear Ratio (V_Ed/V_Rdmax) Shear Ratio Asw-H_req	47254 47254 47254 47254 0.987 < 0.0022	5 N 5/ 414399 = 1.140 5/ 478557 = 0.987 5/ 1716750 = 0.275 1.000 O.K 2 mm²/m, 2-P10 @70	559460 N 559460 / 412915 = 1.355 559460 / 566366 = 0.988 559460 / 1741500 = 0.321 0.988 < 1.000 O.K 0.00222 mm ^e /m, 2-P10 @70
[JOINT]	y : (l)		z : (l)
Vjhd / Vjs Joint Ratio Ash.jnt	0.00000 0.000 < 0.00000	0 / 0.00000 = 0.000 1.000 O.K 0 mm², Not Use	0.00000 / 0.00000 = 0.000 0.000 < 1.000 O.K 0.00000 mm², Not Use

7. Specify Moment-Rotation hinge properties with multi curve

• Definition of hinge curve and yield strength depending on axial force in FEMA type

Pushover > Properties > Define Pushover Hinge Properties

8. Added name box in thickness properties.

Usage classification for the same thickness

Properties > Section > Thickness

9. Bilinear type spring stiffness for surface spring support

- Bilinear spring type is added in the Surface Spring Support to simulate the strength limit of the soil. The strength limit should be defined by the user.
- Both Point Spring Support and Elastic Link are supported.

10. Force/Stress contouring based on center value of plate elements

- Stresses at the node are determined by the linear interpolation of Gauss points, which often leads to stress exceeding yield stress in the material nonlinear analysis.
- Plate stress contour can now be displayed using the value at the element center instead of element nodes. The center values will not exceed the yield stress.

midas Gen

11. Added "Node" icon in tool bar

Quick display on/off for Node

midas **Design+**

Design+

1. Added moment bolt connection as per AISC

Supporting AISC-URFD05(M) / AISC-URFD10(M) / AISC-URFD16(M)

