Notas de lanzamiento

Fecha de lanzamiento: Enero del 2023

Versión del producto: GTS NX 2023 (v.340)

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

Mejoras

1. Pre/Post Procesamiento

- 1.1 Mejora de la opción de reinicio de análisis en análisis de consolidación, no lineal y acoplado (*Fully Coupled Stress Seepage*).
- 1.2 Unión automática de nodos al eliminar los elementos de interfaz.
- 1.3 Mejoras en función On-curve Diagram.
- 1.4 Mejoras en función Load Distribution Factor (LDF).
- 1.5 Relación de Poisson para análisis dinámicos.
- 1.6 Salida de amortiguamiento Rayleigh para cada modo de vibración en el análisis de valores propios (*Eigenvalue*).
- 1.7 Relación de amortiguamiento para *Point spring, Matrix spring* y *Elastic link.*
- 1.8 Configuración de Surface Spring mediante función.
- 1.9 Actualización de biblioteca de espectros de diseño.
- 1.10 Mostrar/ocultar todos los niveles de agua.

- 1.11 Mejoras en Cut-Off Negative effective Pressure.
- 1.12 Método exacto para calcular el esfuerzo de Von Mises y los esfuerzos principales para el cálculo del promedio nodal.
- 1.13 Método exacto y promedio en la combinación de resultados.
- 1.14 Función Element Contour Plot.
- 1.15 Mensaje de error al ingresar factores de escala inadecuados.
- 1.16 Mayor cantidad de posiciones de extracción de resultados para elementos Beam.
- 1.17 Copiar pretensados de los elementos 1D.
- 1.18 Considerar la rotación en elementos Embedded Truss.
- 1.19 Ajuste del tamaño de fuente en la etiquetas de resultados.
- 1.20 Superficies de agua en el PDF 3D.
- 1.21 Mejora en la salida de resultados para análisis tiempo-historia.
- 1.22 Las opciones generales y de análisis ahora están separadas.
- 1.23 Condición no drenada para el análisis por etapas constructivas.

Integrated Solver Optimized for the next generation 64-bit platform

Finite Element Solutions for Geotechnical Engineering

Mejoras

2. Análisis

- 2.1 Función de base compatible (Compliant base) para análisis sísmicos.
- 2.2 Base compatible y fronteras absorbentes para análisis de campo libre.
- 2.3 Biblioteca de materiales definidos por el usuario.
- 2.4 Integración de funciones de midas SoilWorks para análisis de estabilidad de taludes por métodos de equilibrio límite.
- 2.5 Gráfico de convergencia del factor de seguridad en la ejecución del análisis de estabilidad SRM.
- 2.6 Condición de frontera para análisis In situ y de estabilidad SRM durante análisis tiempo-historia.
- 2.7 Modelo constitutivo de grietas distribuidas para concreto.
- 2.8 Modelo constitutivo de plasticidad y daño para concreto.
- 2.9 Análisis de fatiga.

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

1.1 Mejora de la opción de reinicio de análisis en análisis de consolidación, no lineal y acoplados

En la versión anterior podíamos reiniciar el análisis desde una etapa específica. A partir de la versión 2023 podemos reiniciar el análisis desde el último paso convergente de una etapa en particular. Esta función es aplicable para análisis estáticos no lineales, análisis de consolidación y análisis acoplados por etapas constructivas.

Save Last Converged Step: Guarda todas las etapas y el último paso convergente.

Analysis > Analysis Case > General > Tipo de solución: Construction Stage > Analysis Control

eneral	Nonlinear	Age						
Wate	r Pressure							
	utomatically	Consider	Water Pre	ssure				
Taitial	Channe							
	itial Stage fr	r Streen	Voalucia					
	liuai Staye it	JI JUESS /	Ridiysis				~	
	Арріу КО С	onation						
	Cut-Off Ne	gative Ef	fective Pre	ssure				
Initial	Stress							
Es	timate Initia	l Stress o	f Activated	Eleme	nts			
Final	Calculation 9	Stage —						
Final	Calculation S nd Stage	Stage OMic	idle Stage				\sim	
Final	Calculation S nd Stage ify Restart S	Stage Mic	ldle Stage				~	
Final The second seco	Calculation S nd Stage ify Restart S art Option —	Stage O Mic Stage	ldle Stage				~	
 Final En Spec Resta Sa 	Calculation S ad Stage ify Restart S art Option — ave only Use	Stage Mic Mic Stage	ddle Stage				~	
Final	Calculation S ad Stage ify Restart S art Option — ave only Use ave All Stage	Stage Mic Mic Stage r Specifier s	ddle Stage d Stages				~	
 Final En Spec Resta Sa Sa Sa Initial 	Calculation S and Stage art Option – ave only Use ave All Stage	Stage Mic Stage r Specifier s	ddle Stage d Stages				~	
 Final En Spector Restation Sa Sa Sa Initial In 	Calculation S and Stage ify Restart S art Option — ave only Use ave All Stage Temperatur itial Temperatur	Stage Mic Stage r Specifier s e ature By V	ddle Stage d Stages /alue			0 [T]	~	

Etapas constructivas 2021v1.1

alysis Control	X Analysis Control
Seneral Nonlinear Age	General Nonlinear Age
Water Pressure	Water Pressure
Automatically Consider Water Pressure	Automatically Consider Water Pressure
Initial Stage	Initial Stage
Initial Stage for Stress Analysis	\Box Initial Stage for Stress Analysis 1:Construction Stage \vee
Apply K0 Condition	Apply K0 Condition
Cut-Off Negative Effective Pressure	Cut-Off Negative Effective Pressure 1: Construction Stage >>
Triffel Channel	Initial Stress
Estimate Initial Stress of Activated Elements	Estimate Initial Stress of Activated Elements
	Final Calculation Stage
Final Calculation Stage	End Stage O Middle Stage 1:Construction Stage >
End Stage Middle Stage	
Consider Destant Street	Specify Restart Stage 2:2 ~
	Restart Option 1:Construction Stage-1_LCS 2:2
	O Save only User Specified Stages 2:2_LCS
	Save All Stages
	Save All Stages and Last Converged Step
Save All Stages and Last Converged Step	Initial Temperature
Initial Temperature	Initial Temperature By Value 0 [T]
Initial Temperature By Value 0 [T]	Initial Temperature By Load Set None

Reiniciar el análisis en una etapa específica

MIDAS

1.2 Fusión automática de nodos al eliminar los elementos de interfaz

Cuando se crea una interfaz entre dos elementos, se generan automáticamente dos nodos separados en la interfaz. Es decir, los nodos de los elementos son separados por la
interfaz. En la versión anterior, al eliminar la interfaz se mantenían los nodos de los elementos separados, por lo que el usuario tenía que fusionarlos manualmente. En esta nueva
versión de midas GTS NX, la función se ha mejorado para fusionar automáticamente los nodos de los elementos cuando se eliminen los elementos de la interfaz.

1.3 Mejoras en función On-curve Diagram

- La función de On-Curve Diagram se ha ampliado para poder ver resultados de superficies. Gracias a esto, los resultados de elementos como los tipo Shell se podrán entender gráficamente con mayor facilidad.
- Result > Advanced > Cutting Diag. > Cutting Plane/Element

On-Curve D	iagram X
Name	Diagram-1
Cutting Di	agram Mode ng Line
Define Pos	sitions
Туре	2D Elem 🗸
	3 Points Plane Select Plane
	2D Elem Solid-Face
Direction	
Reverse	
Q	OK Cancel Apply
	On-Curve Diagram

1.4 Factor de distribución de carga (Load Distribution Factor – LDF)

• El factor de distribución de carga (LDF) permite distribuir el 100% de una carga en diferentes etapas. En esta nueva versión de midas GTS NX el LDF definido para una etapa se podrá copiar a otras etapas constructivas del modelo. Esta mejora ayudará a reducir el tiempo de configuración en modelos donde el proceso constructivo es repetitivo, como el modelado de túneles.

1.5 Relación de Poisson para análisis dinámicos

• En esta nueva versión de midas GTS NX, la relación de Poisson para análisis dinámicos fue incluida para los modelos constitutivos Ramberg-Osgood, Hardin-Drnevich y GHE-S.

	Material X	Material
ID 2 Name Isotropic Color	ID 2 Name Isotropic Color	ID 2 Name Isotropic Color
Model Type Ramberg-Osgood(MODS) V Structure	Model Type Hardin-Drnevich(MODS) V Structure	Model Type GHE-S(MODS) V Structur
General Porous Non-Linear Thermal	General Porous Non-Linear Thermal	General Porous Non-Linear
Non-Linear	Non-Linear	Initial Shear Modulus
Initial Shear Modulus 🛛 🛛 kN/m²	Initial Shear Modulus 🛛 kN/m²	Reference Strain 0
Reference Strain 0	Reference Strain 0	Poisson's Ratio(For Dynamic) 0.3
Maximum Damping 0	Poisson's Ratio(For Dynamic) 0.3	C1(0) 0
Poisson's Ratio(For Dynamic) 0.3	Consider Shear Stress Only	C1(m) 0
Consider Shear Stress Only	Constraint pressure dependence	
Constraint pressure dependence	n1 0.5	
ni 0	n2 0.5	
n2 0	Update Young's Modulus	alpha
Update Young's Modulus		beta 0
		Locaste Stress Only
		Damping Function
		Minimum Strain 0
		Maximum Strain 0
		Unloading Reference Strain
		n1 0
		n2 0
		Material Evaluation

1.6 Salida de amortiguamiento Rayleigh para cada modo de vibración en el análisis de valores propios (Eigenvalue)

- El análisis de *Eigenvalue* proporciona relaciones de amortiguamiento Rayleigh para cada modo de vibración en función de la energía de deformación de la estructura. Esto se puede utilizar para obtener relaciones de amortiguamiento modal en estructuras con diferentes materiales o con dispositivos de amortiguamiento.
- Analysis > Analysis Case > General > Tipo de solución: Eigenvalue > Analysis Control
- Result > Advanced > Others > Modal Damping Ratio

neral		
Teltial Tennenation		
Initial Temperature By Value		0 [T]
Define Water Level	None	
Define Water Level for Math Set	nut Water	Lavel
	iput water	Level
Eigenvectors		
✓ Number of Modes		10 🜲
Frequency Range of Interest		
Lowest 0 Highest	t	0
	Unit: [Cy	de]/ sec
Sturm Sequence Check		
Saturation Effects		
Consider Partially Saturated Effects for Stre	ess Analysis	
Max. Negative Pore Pressure		
Max. Negative Pore Pressure Limit		0 kN/m²
Undrained Condition		
Allow Undrained Material Behavior		
M D		
Mass Parameters		
Received and the Strain France Branchiser Demain	- Datia	
Calculate Strain Energy Proportional Dampin	y Rauo	
	OK	Cance

Eigenvalue > Analysis Control

Relación de amortiguamiento modal

1.7 Relación de amortiguamiento para *Point spring, Matrix spring* y *Elastic link*

- La relación de amortiguamiento se incorporo a *Point Spring*, *Matrix spring* y *Elastic link*. Asimismo, se agregó a todo tipo de elementos como los elástico lineal, elástico no lineal, solo tensión, solo compresión, hook, gap, free ground damper, entre otros.
- Dado que la entrada del amortiguamiento del material no está presente para estos elementos, la relación de amortiguamiento desarrollada se utilizará en el cálculo del amortiguamiento Rayleigh mencionado en la sección 1.6 de estas notas de lanzamiento.

Create/Modify Other Property	×		Create/Modify Other Property	×
Create/Modify Other Property Matrix Spring Elastic Link Rigid Link Interface Shell Interface Free Field Seepage Cut Off User Supplied Behavior for Shell Interface V-Direction Seepage Cut Off User Supplied Behavior for Shell Interface Or Properties Spring Constant X-Direction Kz X-Rotation Krz C-Rotation Krz V-Rotation Krz V-Rotation Cr V-Direction Cr V-Direction Cr V-Direction Cr	Color Image: Color 0 kl/m 0 kl/m 0 kl/m(rad] 0 kl/msec/m 0 kl/msec/m 0 kl/msec/mal 0 kl/msec/[rad] 0 kl/msec/[rad	X D 2 Name Other Property Color X Kx Ky Kz Krx Kry Krz Kx 0 0 0 0 0 0 0 Ky 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 0 0 0 0 0 Kx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Create/Modify Other Property Peint Spring Netro Spring Pejd Link Interface User Supplied Behavior for Shell Interface Ple Tip Infinte Free Field Seepage Cut Off	I Name Other Property Color Type Image Flastic Rigid V-Direction Spring Constant(Kx) Compression Only V-Direction Spring Constant(Kx) Iskl/m X-Direction Spring Constant(Kx) Iskl/m X-Direction Spring Constant(Kx) Iskl/m Y-Direction Spring Constant(Kx) Iskl/m Permeability Coefficient m Conductance W/(T] Damping 0 Damping Ratio 0
		Krx 0		
		Damping Ratio 0		

1.8 Configuración de Surface Spring mediante función

• Si se desea simular el comportamiento del suelo utilizando *Surface Spring*, se debe tener en cuenta que la rigidez varía con la profundidad. Para ello, en la versión 2023 de midas GTS NX se agregó la posibilidad de configurar los *Surface Spring* mediante una "Función base", tal como se hace con las cargas.

Surface Spring V	Surface Spring \checkmark	Surface Spring \checkmark	Surface Spring V
Target Object	Target Object	Target Object	Target Object
Targe Frame V	Targe Frame	Targe Frame V	Targe Frame ~
		? Select Object(s)	Select Object(s)
Select Object(s)	Select Object(s)	Element Width 1 m	Element Width 1 m
Element Width 1 m	Element Width 1 m	Convert to	Consumption of the second seco
Convert to	Convert to	Point Spring	O Point Spring
Point Spring	O Point Spring	C Elastic Link	Elastic Link
O Elastic Link	Elastic Link	O Normal/Shear Elastic Link	O Normal/Shear Elastic Link
🔿 Normal/Shear Elastic Link	O Normal/Shear Elastic Link	Point Spring Information	Elastic Link Information
Point Spring Information	Elastic Link Information	Modulus of Subgrade Reaction	Boundary Condition Set
Modulus of Subgrade Reaction	Boundary Condition Set	Base None 🗸 🍋	Boundary Set-1 🗸 🗸
	Boundary Set-1	Kx 0 kN/m ³	
KX 0 KN/m ³			Direction Normal(+) V
Ky 0 kN/m ³	Direction Normal(+) ~	Base None H	Modulus of Subgrade Reaction
Kz 0 kN/m³	Modulus of Subgrade Reaction	Ky O Nym-	Base Function None 🗸 🍽
Damping Constant/Area		Base None 🗸 💾	0 kN/m3
Cx 0 kN·sec/m³	U kN/m ³	Kz 0 kN/m ³	
	Length of Elastic Link	Damping Constant/Area	Length of Elastic Link
Cy 0 KN-Sec/m-	0 m	Cx 0 kN·sec/m³	0 m
Cz 0 kN·sec/m³		Cy 0 kN·sec/m³	
	rens. onlyComp. only		
			Damping
		Damping	Damping Ratio 0
operty	Property	Property	Property
		3 3: Surface Spring ∨ H≧	3 3: Surface Spring \vee H
h Set Surface Spring	Mesh Set Surface Spring	Mesh Set Surface Spring	Mark Sat
			Mesn set Surrace spring V
OK Cancel Apply	K Cancel Apply	🔯 🔗 OK Cancel Apply	🙉 🖌 🛛 OK Cancel Apply

1.9 Actualización de biblioteca de espectros de diseño

• En la biblioteca de espectros de diseño, se incluyeron nuevos espectros de diseño de acuerdo a diferentes normas internacionales, incluyendo los de la NSR-10 (Colombia).

Dynamic Analysis > Load > Response Spectrum

Taiwap(2022)			2)	Normalized Ac			Dicplacement	
		T diff diff 202	-/	Normalized Accel		Orthouty		
	Design Spe	ectrum		Scaling Scale Factor	1	Damping Ratio Graph Option 0.05 X-axis Loc		ı g Scale
	Period (sec)	Spectral Data	^	O Max. Value	0 g		Y-axis Log S	cale
T	0	0.10204		0.27				_
	0.1	0.22959		0.25				_
	0.12	0.2551		0.24				
	0.2	0.2551		0.22				_
	0.3	0.2551		0.2				_
	0.36	0.2551		0.18				_
	0.4	0.2551		0.16				
	0.5	0.2551		- 0.14 - 0.13				
	0.6	0.2551		0.12				
	0.7	0.21866		8 0.1 0.09				
	0.8	0.19133		0.08				
	0.9	0.17007		0.06				
	1	0.15306	~	0.04				
nut I	a a l	0.10015		0.02				
eriod	onic		\sim	0 0.5 1 1.	5 2 2.5 3 3.5 4 4.	5 5 5.5 6 6.5 7 7. Period	8 8.5 9 9.5 10	10.1
scrip	tion TAIWA	N(2022) : Gene	eral,	Design, SoilType1, I=	1.00, ay=1.00, R=1.6	ОК	Cancel A	\pply

KBC 2016 China GB/T 51408-2021 China JTG/T 2231-01-2020 China GB 50011-2019 China CJJ 166-2011 Japan Bridge 2017 Taiwan 2022 IS 1893 2016 NSR-10 P 100-1 2013 NTC 2018 DPWH-LRFD BSDS 2013 AS 5100.2 2017 IRC:SP:114-2018

1.10 Mostrar/Ocultar todos los niveles de agua

En las versiones anteriores era necesario ocultar/mostrar todos los niveles de agua definidos en cada etapa de manera individual. Con midas GTS NX 2023 podrás ocultar o mostrar los niveles de agua de todas las etapas con un solo clic.

1.11 Mejoras en Cut-off Negative Effective Pressure

En la última versión el usuario podrá elegir una etapa específica para activar la opción *Cut-Off Negative Effective Pressure*. La versión anterior solo permitía activar esta opción en la etapa inicial del análisis de esfuerzos.

• Analysis > Analysis Case > General > Solution Type : Construction Stage > Analysis Control

Initial Stage	Initial S	Stage	1: Construction Stage
		lial Stage for Suless Analysis	1.Construction Stage- V
Initial Stage for Stress Analysis 1:Insitu 🗸		Apply K0 Condition	
Apply K0 Condition	Cut	-Off Negative Effective Pressure	1:Construction Stage- >>
			1:Construction Stage-1
✓ Cut-Off Negative Effective Pressure	– Initial S	Stress	2:Construction Stage-2
	Esti	imate Initial Stress of Activated Elem	ents
2021v1.1		2023v1.1	

Options

E Results

Reset

Reset All

Ceneral

🔊 Vector

对 Deform

No Results
Diagram
Graph
Animation
Legend

1.12 Método exacto para calcular el esfuerzo de von Mises y los esfuerzos principales para el cálculo del promedio nodal

Dado que los componentes del esfuerzo son direccionales, agregamos un método para calcular el valor promedio al considerar los resultados de von Mises y los esfuerzos principales.

- *Simple Average*: Promedio del resultado de cada elemento que comparte un nodo.

X

- **Exact:** Después del promedio de los componentes del esfuerzo (XX, YY, XY, etc.) de cada elemento que comparte nodos, se calcula nuevamente el esfuerzo principal y el esfuerzo de von Mises.

En la versión 2023, la opción Simple Average se utiliza por defecto, sin embargo, el usuario tiene la opción de cambiar el método.

Analysis > Tools > Option

General

Customize Shortcut Key...

Opciones en el cuadro de diálogo

Regard as Zero

Random Analysis

1e-012

Nodal Average Calc, Simple Average

OK

Cancel

General Geometry/Mesh/Connections Loads/B.C. Results

Exact

Calcula los esfuerzos normales $\sigma_{xx'}$ $\sigma_{yy'}$ σ_{zz} y cortantes $\tau_{xy'}$ $\tau_{yz'}$ τ_{xz} para los elementos 1 y 2.

Toma el promedio de los esfuerzos normales y de corte para el promedio nodal.

 σ_{xx_prom} , σ_{yy_prom} , σ_{zz_prom} , τ_{xy_prom} , τ_{yz_prom} , τ_{xz_prom}

Calcula los esfuerzos de von Mises σ_v usando el promedio de los esfuerzos normales y de corte.

1.13 Método exacto y promedio en la combinación de resultados

En la versión 2023, el usuario tendrá la opción de elegir entre los métodos Exact y Simple Add mientras combina linealmente los resultados.

Result > Result > Combination

Simple Add

1.14 Función Element Contour Plot

Si los resultados de dos elementos utilizan la función Element Contour Plot, los resultados se calculan de la siguiente manera:

Nodal Average Option: Simple Average

Calcula el promedio en los nodos que comparten los resultados. Simplemente, promedia los elementos seleccionados por el usuario.

Nodal Average Option: Exact

El esfuerzo por tipo de elemento (XX, YY, ZZ, XY...) es un promedio. Los esfuerzos principales, von Mises, etc. se calculan utilizando el método **Exact** en los nodos compartidos por diferentes elementos.

Sin embargo, si no comparte nodos, es decir, contacto, etc., el resultado se calculará por tipo de elemento.

1.15 Mensaje de error al ingresar factores de escala inadecuados

• Cuando se define una función base para una fuerza o esfuerzo, y se ingresa como valor de escala cero (0), se puede generar un comportamiento anormal en el modelo. Por lo tanto, se desarrolló un mensaje de advertencia cuando se ingresa un valor cero de las fuerzas y esfuerzos.

Name Force-1			
Object			
Type Node ~			
Select Object(s)			
Load Type			
Total Force O Per Face/Edge			
Reference Object			
Type Coordinate			
Ref. CSvs. Clabal Bostangular, V. H			
Gibbai Rectariguiai	4		
Components			
Base Function test V	<u>1</u>		
X 0 kN	4		
	N I	 > GTS NX 2023 (VI.1) (G4DIC) > Copyright (C) SINCE 1989 MIDAS Information Technology Co., Ltd. AL 	L RIGHTS RESERVED.
Y 0 kh		> [Error] Force value cannot be zero!	
Y 0 kh	a	Error] Force value cannot be zero!	
Y 0 kM Z 0 kM	v	[Error] Force value cannot be zerol [Error] Force value cannot be zerol [Work project is being saved by auto-save function	

1.16 Mayor cantidad de posiciones de extracción de resultados para elementos Beam

- Anteriormente, en el caso de los elementos *Beam*, solo se podían extraer los resultados de los puntos I y J. En la nueva versión de midas GTS NX se agregaron más ubicaciones para que se puedan extraer resultados de acuerdo con el número de segmentos de los elementos Beam, establecidos *en Analysis Case > Output Control*.
- Result > Advanced > Extract

Output Da	ata	
Analysis S	et ко. о.	.5 ~
Result Tvr	e Beam	Element Forces
Results	All	~
Crown Harder Invert	support:IN(n crown sup) excavation: support:IN(n invert supp	CR=1 (LOAD=1.000):Beam E port:INCR=1 (LOAD=1.000): :INCR=1 (LOAD=1.000):Beam E cR=1 (LOAD=1.000):Beam El port:INCR=1 (LOAD=1.000):I
<		>
Se	elect All	Unselect All
Object) Node tesult Extrac	Element
Select Of	niect	1168
Sort	X Y	/ Z Ascending
O Maximu	um OMini y Show Node	imum 🔵 Abs. Max le/Element
traction P	osition in Ele	ement Node 1 Tab Node 1 Node 2 Node 1 (Average) Node 2 (Average) Node 1/4

MIDAS

1.17 Copiar pretensado en elementos 1D

- Al copiar elementos 1D en los que se define el pretensado, la carga de pretensado también se puede copiar en conjunto.
- Mesh > Mesh Set > Copy
- Mesh > Transform > Translate / Rotate / Mirror

Mesh Set X	Mesh Move/Copy X	Mesh Move/Copy X	Mesh Move/Copy X
Rename Copy Create Divide Select Object(s) Mesh Set Name Mesh Set Copy Add to Mesh	Translate Rotate Mirror Scale Sweep Select Objet Image: Select Object (s) Image: Select Object (s) Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction Image: Select Direction	Translate Rotate Mirror Scale Sweep Select Objet Image: Select Object (s) Image: Select Object (s) Rotation Axis Image: Select Rotation Axis Image: Select Rotation Axis Image: Select Rotation Axis	Translate Rotate Mirror Scale Sweep Select Objet Image: Select Object (S) Image: Select Object (S) Mirror Type Plane V
OK Cancel Apply	Operation Operation <t< td=""><td>○ 2 Points Vector ○ X ○ Y ○ Z ○ 0, 0, 0 ○ 1, 1, 1 Method ○ Move ○ Copy</td><td>Select Plane Select Plane O, 0, 0 0, 0, 0</td></t<>	○ 2 Points Vector ○ X ○ Y ○ Z ○ 0, 0, 0 ○ 1, 1, 1 Method ○ Move ○ Copy	Select Plane Select Plane O, 0, 0 0, 0, 0
	Distance 30 < Times 1 Copy Prestress for 1D Elements Mesh Set Copied Mesh Set-1	(Uniform) (Non-Uniform) Angle 30 [Deg] Times 1	0, 0, 0
	Image: Second state OK Cancel Apply >> Translate	© OK Cancel Apply >> Rotate	Image: Second state Image: Second state Apply >> Mirror

1.18 Considerar la rotación en elementos Embedded Truss

• En la nueva versión de midas GTS NX es posible considerar la rotación de elementos embebidos. Si el elemento embebido está incluido en el Shell, esta opción debe estar activada.

Create/Modify 1D Property X	Create/Modify 1D Property X					
Pile Geogrid(1D) Plot Only(1D)	Pile Geogrid(1D) Plot Only(1D)					
Truss Embedded Truss Beam Embedded Beam ID 1 Name ID Property Color Constitutive Behavior From Material Image: Color Material Image: Cross Sectional Area(A) 0	ID 7 Name ID Property Color Constitutive Behavior From Material Material I: Isotropic Cross Sectional Area(A) 0 m ²					
Spacing 1 m	□ Spacing 1 m □ Section Consider rotation of the embedding elements					
OK Cancel Apply	OK Cancel Apply 2023 v1.1					

1.19 Ajuste del tamaño de fuente en la etiqueta de resultados

- En midas GTS NX 2023 podrá ajustar el tamaño del texto de la etiqueta de resultado. Podrás escoger un tamaño en una escala de 1 a 5.
- Result > Advanced > Probe

Probe Results X Entity Type Color Value Tag Type Image: Node Tag Color Image: Exponential Decimal Point Image: Size Element Text Color Image: Size Image: Size Image: Size Results Image: Show Type ID Value Image: Node 130 0.5640 Image: Size	0.5640
Max Min Abs Max Clear All Min/Max Value of Each Part Close	0.5640

1.20 Superficie de agua en el PDF 3D

• En la midas GTS NX 2023, los usuarios podrán exportar la línea o superficie de aguas freáticas, distintos cortes y isoplanos al archivo PDF 3D.

1.21 Mejora en la salida de resultados para análisis tiempo-historia

• Se agregó las opciones "Min/Max/Abs Max Result" para facilitar una comprensión más completa de los resultados en los siguientes casos de análisis.

1.22 Las opciones generales y de análisis ahora están separadas

• Las opciones generales y las opciones de análisis están separadas. Anteriormente las opciones de análisis no se guardaban en el archivo del modelo a pesar de que los resultados del análisis dependían de éstas. Ahora, las opciones de análisis se guardan en un archivo individual del modelo.

1.23 Condición no drenada para el análisis por etapas constructivas

• El Analysis Control principal ahora tiene una pestaña que permite considerar el comportamiento del material no drenado cuando se realizan análisis por etapas constructivas. Usando esta opción, se puede superar la molestia de activar "Allow Undrained Material Behavior" en el Analysis Control de cada etapa constructiva.

Analysis Control	
General Nonlinear Age	¢₽}
Water Pressure	<
Automatically Consider Water Pre-	ssure
Initial Stage	
Initial Stage for Stress Analysis	1:INITIAL GROUND
Apply K0 Condition	
Cut-Off Negative Effective Pressur	
	e 1.1MT DE GROOND
Initial Stress	
Estimate Initial Stress of Activated	l Elements
Final Calculation Stage	
End Stage Middle Stage	1:INITIAL GROUND
Specify Restart Stage	
Restart Option	
Save only User Specified Stages	
Save All Stages	
Save All Stages and Last Converge	ed Step
Initial Temperature	
Initial Temperature By Value	0 [T]
Initial Temperature By Load Set	None \vee
Saturation Effects	
Consider Partially Saturated Effect	ts for Stress Analysis
Max. Negative Pore Pressure	
Max. Negative Pore Pressure Limit	t 0 kN/m
Initial Configuration	
Estimate Initial Configuration of A	ctivated Nodes
Undrained Condition	
Allow Undrained Material Behavior	r
-	
	OK Can

MIDAS

2.1 Función de base compatible (*Compliant base*) para análisis sísmicos

• En análisis sísmicos, el sismo de entrada es aplicado en la base del modelo. Cuando se utiliza como sismo de entrada una señal obtenida de un afloramiento rocoso, utilizar una base rígida en el modelo puede producir resultados incorrectos. En estos casos se utiliza la base compatible, la cual tiene la capacidad de retirar los efectos de las ondas descendentes presentes en las señales adquiridas en afloramientos rocosos. A nivel numérico, cuando se aplica la base compatible la mitad del movimiento de entrada (ondas descendentes) es absorbida por un amortiguador, y la otra mitad es aplicada al nodo de la base del modelo. Dentro de la pestaña de diálogo de midas GTS NX 2023, el usuario tendrá la opción de elegir entre Absorbent/Compliant Base y Rigid Base.

Esfuerzo vertical (σ_n) y cortante (τ)

Absorbent $\sigma_n = -\rho V_p (\dot{u}_y^m - \dot{u}_y^g)$ $\tau = -\rho V_s (\dot{u}_x^m - \dot{u}_x^g)$

Compliant-base $\sigma_n = -\rho V_p (\dot{u}_y^m - 2\dot{u}_y^g)$ $\tau = -\rho V_s (\dot{u}_x^m - 2\dot{u}_x^g)$

Escalado del coeficiente de amortiguamiento

 \times

ÞÐ

Cancel

GTS NX 2023

2.2 Base compatible y fronteras absorbentes para análisis de campo libre

 Las condiciones de frontera Compliant Base/Absorbent también se puede asignar en la base de los elementos de campo libre. El usuario tendrá la opción de elegir el tipo de amortiguamiento para este tipo de elementos.

MIDAS

2.3 Biblioteca de materiales definidos por el usuario

User Supplied Material Library File: Cargue un archivo del modelo geotécnico personalizado de la biblioteca.

User-Supplied Soil Material Models: Seleccione el nombre del modelo de la biblioteca.

User-Supplied Soil Material Parameters: Introduzca el valor del parámetro definido en el archivo de biblioteca.

Mesh > Prop./CSys./Func. > Material > Create : Isotopic > User Supplied Soil Material

Material X	User-defined Values	
ID 1 Name Isotropic Color	User-Defined Parameters	
Model Type User Supplied Soil Material	Name	Value Unit
General Porous Non-Linear Thermal	NU	0 10/112
User Supplied Material Library File		
D:₩Midas₩midas₩developements₩plaxis-udsm₩manual-exam		
User Supplied Soil Material Models		
ELASTIC ~		
User Supplied Soil Material Parameters 2		

2.4 Integración de funciones de midas SoilWorks para análisis de estabilidad de taludes por métodos de equilibrio límite

• El módulo de estabilidad de taludes de midas SoilWorks, que permite realizar análisis utilizando análisis de equilibrio límite con dovelas (LEM), fue incorporado a midas GTS NX 2023 mediante el módulo llamado LEM. Cabe señalar, que la autenticación automática de la licencia está habilitada.

2.5 Gráfico de convergencia del factor de seguridad en la ejecución del análisis de estabilidad SRM

- En la versión 2023, el usuario puede consultar en tiempo real el gráfico de factor de seguridad vs desplazamiento máximo durante la ejecución del análisis de estabilidad.
- Esta función es aplicable tanto al análisis de estabilidad SRM directo como al activado durante las etapas constructivas.

2.6 Condición de frontera para análisis In situ y de estabilidad SRM durante análisis tiempo-historia.

Las condiciones de frontera para análisis dinámicos son inadecuadas para análisis de peso propio (In situ) y de estabilidad SRM. En midas GTS NX 2023, el usuario puede establecer en los análisis tiempo-historia una frontera distinta para los análisis In situ y SRM. Esto aaplica para todos los análisis tiempo-historia, y para los análisis por etapas constructivas esfuerzo-tiempo historia (*Stress-Nonlinear Time History*).

	Add/Modify Analys Analysis Case Set Title Description Solution Type	is Case ting nonliinear timehistory Nonlinear Time Histor	y + SRM		×	Time Step Analysis Control Output Control	×
Casos de análisis Linear Time History(Modal)	Construction Stage Set Construction Stage Set-1 Analysis Case Model			~			
Nonlinear Time History Nonlinear Time History + SRM Construction Stage Stress-Nonlinear Time History	● ● Mesh ● ● Defaul ● ● Boundary ● ● Dynamic ■ ■ Contact P	All Sets t Mesh Set Condition Load air	~<	Mesh Boundary Con Contact Pair Boundary Con	Active S sh Set dition dition (In-Sti	tu & SRM)	
	Solve Each Load	Set Independently	Sorting Nam	ne v	ОК	Cancel /	Apply

2.7 Modelo constitutivo de grietas distribuidas para concreto

Este modelo constitutivo, disponible en midas GTS NX 2023, simula la compresión del concreto usando un modelo elastoplástico isotrópico tradicional, y la tensi ón se simula usando un modelo de grietas distribuidas. El modelo de grietas distribuidas es un método que permite simular lagrieta ajustando la tensión y la rigi dez en el punto de integración, sin necesidad de reconfigurar la malla.

2.8 Modelo constitutivo de plasticidad y daño para concreto

Este modelo constitutivo, disponible en midas GTS NX 2023, tiene la capacidad general de simular el comportamiento del concreto y otros materiales que tienden a ser frágiles, incluyendo elementos de mampostería. Está diseñado para aplicaciones en las que el concreto no se encuentra confinado y está sujeto a cargas dinámicas debido como las de un sismo.

MIDAS

2.8 Modelo constitutivo de plasticidad y daño para concreto

Utilizando esta modelo constitutivo, se pueden describir los siguientes comportamientos del concreto: cambios en el comportamiento por esfuerzos de tensión y compresión; cambio en la rigidez elástica por procesos de carga y descarga a tensión y compresión; efectos de recuperación de la rigidez durante procesos de carga y descarga.

2.9 Análisis de fatiga

- El análisis de fatiga se puede realizar en función del esfuerzo (stress-life method) y la deformación (strain-life method).
- El ciclo de vida y daño por fatiga se pueden ver para los diversos métodos de corrección de esfuerzos promedio, es decir, Goodman, Gerber, etc.

MIDAS

Happy Modeling!!