

Release Note

Release Date : January 2021

Product Ver. : Civil 2021 (v1.1)

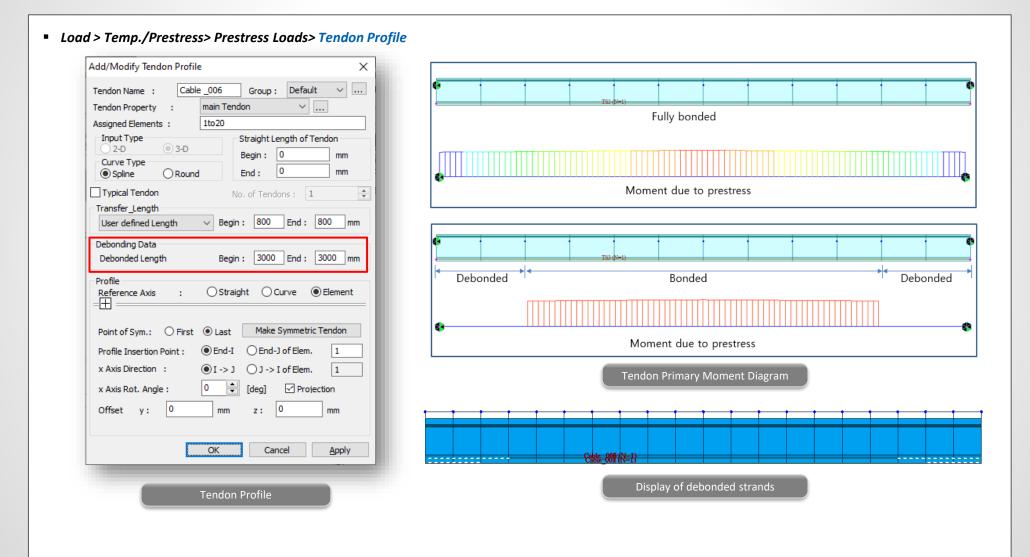
DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Civil Engineering

Enhancements


- 1. Automatic Generation of Moving Train Loads for Dynamic Analysis
- 2. Debonded Length of Pretensioned Beam
- 3. Correction of Tendon Force/Stress within Transfer Length of Pretensioned Beams
- 4. Moving Load Analysis including Centrifugal Force Effects to AASHTO LRFD
- 5. Update to CS 454 revision 1 for the UK Bridge Assessment
- 6. Application of Combined Special Vehicle and ALL model 1 for CS 454 Assessment
- 7. Separate the Results of Combined Vehicles for CS 454 Assessment
- 8. Pretensioned Beam Design at Transfer to AS 5100.5
- 9. Transmission Zone Design of Pretensioned Beam to AS 5100.5
- 10. Crack control for the Slab of PSC Composite Girder to AS 5100.5
- 11. Joint Check of Segmental Construction to BS 5400.4

1. Automatic Generation of Moving Train Loads for Dynamic Analysis


- Generate time-forcing functions without considering the lengths of the element along the track. The required nodal spacing along the track is automatically detected by the program.
- Auto-generate time-forcing function and dynamic nodal loads representing moving train loads. Previously, dynamic nodal loads had to be defined by the user manually.
- This function replaces Tools>Generator>Data Generator>Train Load Generator.

	Train Load Generator				×
	Define Tracks	No	Length(m)	Force(kN)	^
	2 Points Picking Number	1	0.000	170.000	
е	0, 0, 0 m	2	3.000	170.000	
,		3	11.000	170.000	
;	100, 0, 0 m	4	3.000	170.000	
		5	3.275	170.000	
	Operations	6	3.000	170.000	
	Add Insert Delete	7	15.700	170.000	
	· · · · · · · · · · · · · · · · · · ·	8	3.000	170.000	
	No Node Distance(m)	9	15.700	170.000	
		10	3.000	170.000	
		11	15.700	170.000	
	2 2 1.5	12	3.000	170.000	
	3 3 0.5	13	15.700	170.000	
	4 4 1 🗸	14	3.000	170.000	
	Dynamic Load Case HSLM V	15	15.700	170.000	
	Dynamic Load Case HSLM ~	16	3.000	170.000	
	Name	17	15.700	170.000	
		18	3.000	170.000	
	Vehicle Code Korea ~	19	15.700	170.000	
	Vehicle Type KTX, 20 cars, Korea V	20	3.000	170.000	
		21	15.700	170.000	
	Number of Wheels 46	22	3.000	170.000	
	Train Velocity 200 km/h	23	15.700	170.000	
		24	3.000	170.000	
	Scaling	25 26	15.700 3.000	170.000	
	Scale Factor	20	15.700	170.000	
		28	3.000	170.000	
	O Max. Value 0	29	15.700	170.000	
	Time	30	3 000	170.000	~
	Time	<			>
	Start Time 0 sec		Add Modify	Delete Ins	sert
	Direction -Z V				
			Length 0	Force 0	
				OK Car	

2. Debonded Length of Pretensioned Beam

- Devonded length of pretensioned beam can be directly defined when creating strands from the Tendon Profile dialog box.
- Define the actual whole length of stand including debonded parts at both ends and then enter the lengths for debonded parts.

2. Debonded Length of Pretensioned Beam

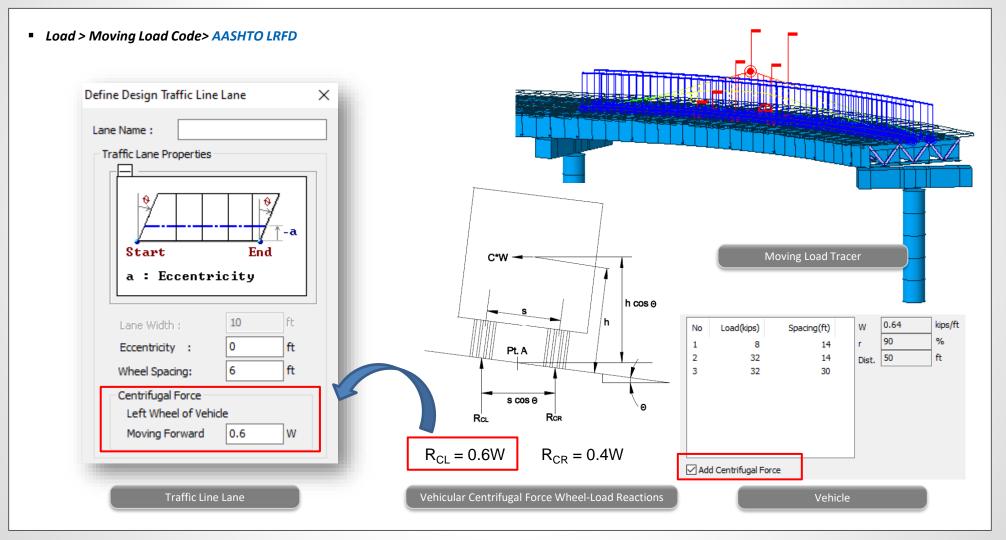
• Debonded length and transfer length can be modified for the multiple strands at one time.

Load > Temp./Prestress > Prestress Loads > Tendon Profile > Change Tendon Profile Design Rating Query Tools	Change Tendon Profile X
Image: Second	Parameter Type O Tendon Name Tendon Property Tendon Property (Group) Typical Tendon Tendon Group Transfer Length Debonded Length
	Mode Profiles Span1-223 Span1-224 >> <<<
	Transfer Length Begin : 850 End : 850 mm OK Cancel Apply
	Change Tendon Profile

3. Correction of Tendon Force/Stress within Transfer Length of Pretensioned Beams

• The stress in the prestressing steel is assumed to vary linearly from 0.0 at the point where bonding commences, to the effective stress after losses at the end of the transfer length.

Load > Temp./Prestress > Tendon Profile Add/Modify Tendon Profile Х Group : Tendon-Spi ~ ... Span 1-221 Tendon Name : steel Pre-tension ~ ... transmission Tendon Property : Tendon stress type fully effective prestressing force length Assigned Elements : 1to34 Input Type Straight Length of Tendon 2-D 🔘 3-D Begin: 0 mm Curve Type 0 ○ Spline Round End : mm constant Typical Tendon strains Transfer Transfer Length ✓ Begin : 800 End: 800 mm User defined Length Length Debonding Data increasing strains indicate transmission of prestress from steel to concrete Begin: 0 Debonded Length End: 0 mm Profile Reference Axis ○ Straight ○ Curve ● Element : \square Point of Sym.: O First Last Make Symmetric Tendon 0 Lt distance from PC member free-end End-I O End-J of Elem. 1 Profile Insertion Point : x Axis Direction : ●I->J ○J->I of Elem. 1 Idealized steel-stress development in PSC member 0 ÷ Projection x Axis Rot. Angle : [deg] 0 0 Offset y: mm z : mm OK Cancel Apply **Tendon Profile**


3. Correction of Tendon Force/Stress within Transfer Length of Pretensioned Beams

• Tendon stresses after immediate loss are determined linearly with the transfer length, and then losses due to creep, shrinkage and relaxation will be calculated along the time.

4. Moving Load Analysis including Centrifugal Force Effects to AASHTO LRFD

- The overturning component of centrifugal force is now taken into account during the moving load analysis. The results of vehicle application will be the combination of vertical effect and overturning effect of the vehicle. The overturning component causes the exterior wheel line to apply more than half the weight of the truck and the interior wheel line to apply less than half the weight of the truck by the same amount.
- In order to apply centrifugal forces, the 'Add Centrifugal Force' option should be checked on from the Vehicle definition as well as Traffic Line/Surface Lane.

5. Update to CS 454 revision 1 for the UK Bridge Assessment

- CS 454 revision 1 Assessment of highway bridges and structures
- The existing CS454/19 is replaced by CS454/20. References in the report are changed from BD 86/11, BD 44/15 to CS 458, CS 455, respectively.

PSC Rating Design Cod	e	×	PSC Rating	Design Cod	e	×
Rating Design Code :	CS454/19	~	Rating De	sign Code :	CS454/20	~
	ОК	Cancel			OK	Cancel
esign Condition			1. Design Condition			
Design code Elemen			Design code	Element	Part(Node)	
CS454/19 16	J(17)		CS454/20	16	J(17)	
ssessment factors						
Seessment factors The following factors, as in BD 86/1:	L have been used to g	ampara results of different	2. Assessment factors			
configurations and combinations.	., have been used to co	Shipare results of unreferit	The following factors, as		e been used to compa	are results of different
Adequacy factor:			configurations and comb • Adequacy factor:	pinations.		
$A = \frac{R_a^*}{S_a^*}$			$A = \frac{R_a^*}{S_a^*}$			
Special Vehicle reserve factor with	standard vehicle:		Special Vehicle reserv		ndard vehicle:	
$\Psi = \frac{R_a^* - (S_D^* + S_{ST}^*)}{S^*}$			$\Psi = \frac{R_a^* - (S_D^*)}{S^*}$	$+ S_{ST}^*$		
Sepcial Vehicle reserve factor with	out standard vehicle:		Sepcial Vehicle reserve	e factor without	standard vehicle:	
	our standard Venicie.					
$\Psi^* = \frac{R^*_a - S^*_D}{S^*}$			$\Psi^* = \frac{R_a^* - S^*}{S^*}$	^S D		
1 - S*			5			

5. Update to CS 454 revision 1 for the UK Bridge Assessment

- Changes in CS 455: The assessment of concrete highway bridges and structures (formerly BD 44/15)
- 1) The compressive stress limit of composite beam is changed.

4.8.2 Stress Limit

a) Non-composite sections:

The compressive stress must be limited to $0.5(f_{cu}/\gamma_{mc})$.

b) Composite sections:

The maximum compressive stress limit can be taken as equal to 0.625 (f_{cu}/\gamma_{mc}).

RΓ	11	/15
DL	, 44,	15

Table 8.15a SLS classes for prestressed elements

SLS class	Tensile stress limits ^[1,2]	Compressive stress limits ^[3,4]
SLS Class 1	$\sigma_{ct} < 0$	$\sigma_c < 0.5 \frac{f_{cu}}{\gamma_{mc}}$
SLS Class 2	$0 \le \sigma_{ct} < \frac{0.56}{\gamma_{mc}} \sqrt{f_{cu}}$	$\sigma_c < 0.5 \frac{f_{cu}}{\gamma_{mc}}$
SLS Class 3	 The tensile stresses in the concrete do not satisfy SLS Class 2 but either of the following are satisfied: 1) hypothetical tensile stresses are assessed to be less than the equivalent limits given in Table 8.15b; or, 2) an assessment of crack widths demonstrates that crack widths satisfy SLS design requirements for durability. 	$\sigma_c < 0.5 \frac{f_{cu}}{\gamma_{mc}}$

5. Update to CS 454 revision 1 for the UK Bridge Assessment

2) The tensile stress limit of pre-tensioned class 3 members is changed.

Table 4-5 Hypothetical flexural tensile stresses for class 3 members

	Limiting crack	Stress for o	concrete grade		
	width	30	40	50 and over	
	mm	N/mm ²	N/mm ²	N/mm ²	
a) Pre-tensioned tendons	0.1	-	4.1	4.8	
	0.15	-	4.5	5.3	
	0.25	-	5.5	6.3	

b) Grouted post-tensioned ten Table 8.15b Hypothetical tensile stress limits for SLS Class 3

			Hypothetical tens depth ^[2]	ile stress limits for a	member of 400mm
c) Pre-tensioned tendons distr	Prestressing type	Surface environment ^[1]	$f_{cu} = 30 \text{ MPa}$	$f_{cu} = 40 \text{ MPa}$	$f_{cu} \ge 50 \text{ MPa}$
the tensile zone and positione	Pre-tensioned tendons /	Extreme	-	4.1	4.8
the tension faces of the concre	grouted post-tensioned	Very severe	3.5	4.5	5.3
BD 44/15	tendons	Severe / Moderate	4.1	5.5	6.3
	Pre-tensioned tendons	Extreme	-	5.3	6.3
	distributed in the tensile zone and positioned close to the tension faces of the	Very severe	-	5.8	6.8
	concrete	Severe / Moderate	-	6.8	7.8
	Note 1: The surface environment is defined in Tab Note 2: The hypothetical tensile stress limits are a depth factor in Table 8.15d. Note 3: The hypothetical tensile stress limits are b and the concrete is assumed to have linear elastic Note 4: The hypothetical tensile stress limits are r not to be checked for cracking, and those contain prestress is an axial force and moment, and crack Note 5: The hypothetical tensile stress limits cons	applicable for a member of 400mm pased on the analysis of a notional c properties in tension and compre- not applicable for unbonded tendor ing both bonded and unbonded tendor k widths are calculated as reinforce	n depth. For other depths, t ally uncracked section wher ession up to the hypothetica ons; prestressed structures endon are treated as reinfor ed concrete columns.	e plane sections are a al stress limits. containing exclusively ced concrete sections	ssumed to remain plan unbonded tendons nee in which the effect of

5. Update to CS 454 revision 1 for the UK Bridge Assessment

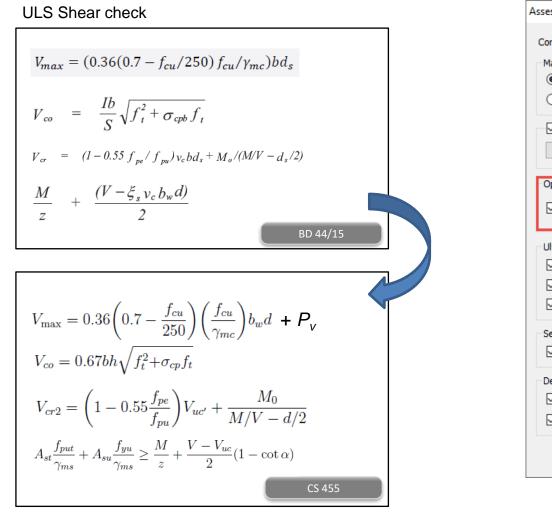
3) When additional reinforcement is contained within the tension zone, the provision of increase in the tensile stress limit of pre-tensioned class 3 members is removed.

6.3.2.4 Cracking

When additional reinforcement is contained within the tension zone and positioned close to the tension faces of the concrete, these hypothetical tensile stresses may be increased by an amount that is proportional to the cross-sectional areas of the additional reinforcement expressed as a percentage of the cross-sectional area of the tensile concrete. For 1 % of additional reinforcement the stresses in Table 25 may be increased by 4.0 N/mm² for members in groups a) and b) and by 3.0 N/mm^2 for members in group c). For other percentages of additional reinforcement the stresses may be increased in proportion, except that the total hypothetical tensile stress should not exceed one-quarter of the characteristic cube strength of the concrete.

Where the hypothetical tensile stresses in Table 25 are to be increased to allow for additional reinforcement, and where the depth factors in Table 26 also apply, the values to be used should be obtained by first multiplying the basic stress from Table 25 by the appropriate factor from Table 26 and then adding the allowance for additional reinforcement.

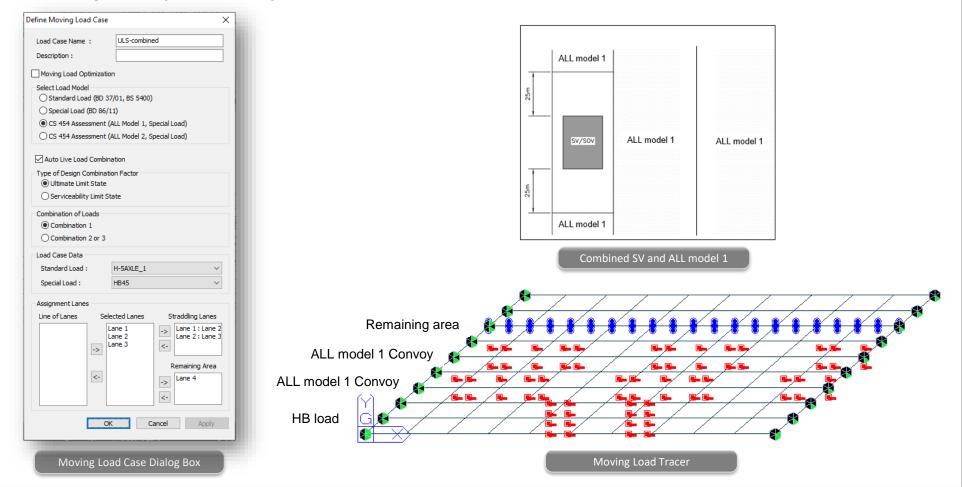
BD 44/15 referring to BS 5400-4


Removed

CS 455

5. Update to CS 454 revision 1 for the UK Bridge Assessment

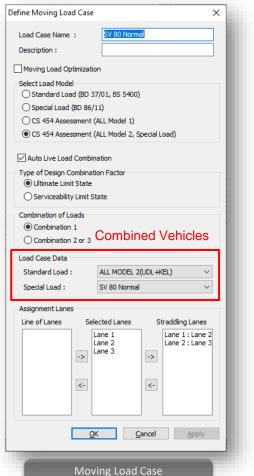
4) Some formulae for ULS shear check are changed.


5) The vertical component of the prestressing force may be added to Vmax as per clause 8.20.2. Additional option is introduced to consider this change.

Assessment Parameter X
Condition Factor(Fc)
Material Strength used for Assessment
Characteristic Strength
O Worst Credible Strength
User Input
Modify Design Parameters
Option for Shear Resistance
Add Vertical Component of Prestressing Force to Vmax (d. 8.20.2)
Ultimate Limit State
✓ Shear
Torsion
Serviceability Limit State
Stress/Crack
Detailed Report
Ultimate Limit State
Serviceability Limit State
OK Cancel
Option in Assessment Parameter

6. Application of Combined Special Vehicle and ALL model 1 for CS 454 Assessment

- CS 454: Assessment of highway bridges and structures
- ALL mode 1 (single or convoy) can be applied along with special vehicle or HB load.
- Load > Moving Load Code> BS
- Load > Moving Load Analysis Data > Moving Load Cases



7. Separate the Results of Combined Vehicles for CS 454 Assessment

- The results of combined special vehicle and ALL model can be viewed separately by vehecles.
- This is useful when calculating reserve factors for special vehicles applied together with ALL model 1 or 2.

Load > Moving Load Code> BS

Results > Result Tables > Beam > Forces

	Elem	Lo	ad	P	art	xial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN·m)	Mome (kN-	· ·	Moment-z (kN·m)
\mathbf{F}	1	ULS-comb	ined(max)	[[1]	729.73 10.91		0.00	0.00 19.7		874.94	13.47
	1	ULS-comb	ined(max	J[2]		729.73	10.91	0.00	19.7	1 2	2142.31	205.19
	2	ULS-comb	ined(max)	[2]	624.96	17.12	40.42	18.0	12 7	2096.93	35.66
	2	ULS-comb	ined(max)	J[3]	624.96	17.12	40.42	18.0	2 3	3716.00	105.83
	3	ULS-comb	ined(max)			25.54	73.49	0.7	8 3	660.09	39.4
	3	3 ULS-combined(max))	P	577.18	25.54	73.49	0.7	8 4	814.77	148.9
	}====	Force /						y Max Valı				r
	Elem	Load		Part	Component		Shear-y (kN)	Shear-z (kN)	Torsion (kN⋅m)	Moment-y (kN·m)	Moment-z (kN·m)	
	1 U	JLS-combined	l(max)	[[1]	Moment-	/ 729.73	10.49	0.00	19.71	610.40	13.47	
		ILS-combined		J[2]	Moment-	A	10.49		19.71	1490.96	142.59	1
_	2 ULS-combined(max) 2 ULS-combined(max) 3 ULS-combined(max)		· ·	[2]	Moment-		16.48		18.02	1534.39	28.40	
-				J[3] [[3]	Moment-y Moment-y		16.48		18.02	2991.74 2990.64	91.46 38.52	
-		LS-combined		J[4]	Moment-		25.51		0.00	3965.49	100.88	
		t By Max Valu				-		, · · ·				·.
		,	io [bodin re		A Headin	by Max value-[b	eam Force]_Sta	ndard A Res	ult By Max Val	ue-[Beam Fo	rce]_Special	/
		Elem	Part		combined		View by	Load Case	es	ue-[Beam Fo	rce <u>]</u> Special	/
			Part				View by	Load Case	ed_Special	·		r
		Elem Moment-y(kN	Part		combined max	ULS-combined	View by d_Standard k	Load Case	ed_Special x	·	rce <u>] Special</u> SV rese	r
•		Moment-y(kN 1	Part I-m)		combined max 874.94	ULS-combined	View by d_Standard k 264.55	Load Case	ed_Special x 610.40	•	SV rese	rve fact
•		Moment-y(kN 1 1	Part I-m) I J		-combined max 874.94 2142.31	ULS-combined	View by d_Standard < 264.55 651.35	Load Case	ed_Special x 610.40 1490.96	•	SV rese	rve fact
•		Moment-y(kN 1 1 2	Part (•m) J		combined max 874.94 2142.31 2096.93	ULS-combined	View by d_Standard < 264.55 651.35 562.54	Load Case	ed_Special x 610.40 1490.96 1534.39	•		rve fact
•		Moment-y(kM 1 1 2 2	Part I-m) I J		combined max 874.94 2142.31 2096.93 3716.00	ULS-combined	View by d_Standard k 264.55 651.35 562.54 724.25	Load Case	ed_Special x 610.40 1490.96 1534.39 2991.74	•	SV rese	rve fact
• • • • • • • • • • • • • • • • • • •		Moment-y(kN 1 1 2	Part I:m) I J J J J		combined max 874.94 2142.31 2096.93	ULS-combined	View by d_Standard < 264.55 651.35 562.54	Load Case	ed_Special x 610.40 1490.96 1534.39	•	SV rese	rve fact

8. Pretensioned Beam Design at Transfer to AS 5100.5

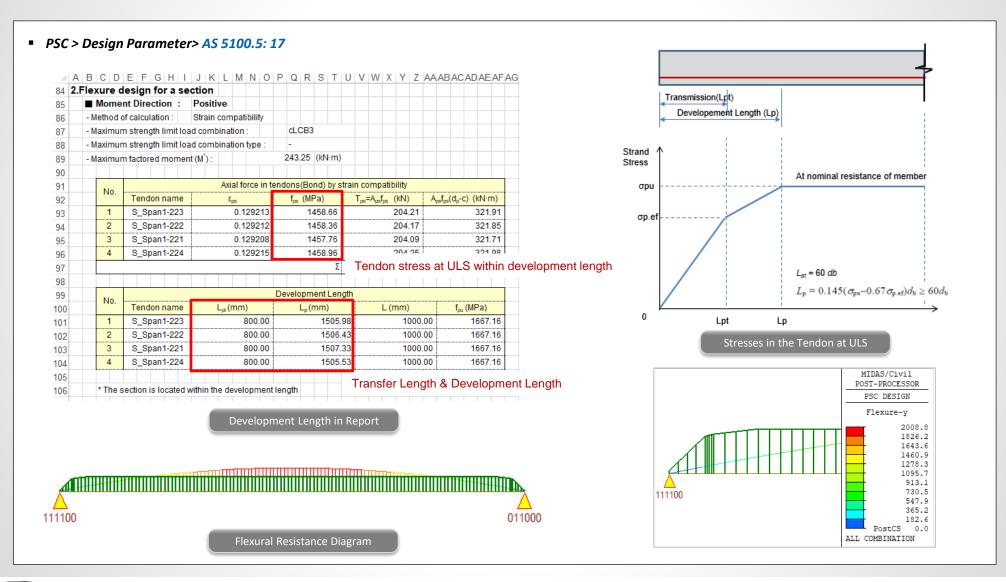
- Pretensioned beam design at transfer is provided as per clause 8.1.6.2 and 8.6.2 of AS 5100.5.
- Load combination type for transfer check is added.
- Compressive strength, fcp during transfer needs to be defined manually for the design checks.

PSC > Design Parameter> AS 5100.5: 17

oad Com	binatio	ns						— 0 ×
General	Steel	Design Co	oncrete Desia	n SRC Design	Con	nposite Steel Girder Design		
		ation List	·····,	- porte besign	1 001			Load Cases and Factors
	No	Name	Active	Туре	E	Description		LoadCase Factor
	1	cLCB1	Strengt	Add	Г	ULS : Minimum Strength and Stability - 1.35(cEL2)	-	Dead Load(CS) 1.0000
	2	cLCB2	Strengt	Add	Г	ULS : Minimum Strength and Stability - 0.9(cEL2)		Tendon Primary(CS) 1.0000
	3	cLCB3	Strengt	Add	Г	ULS6 : 1.8M[1]+2.0(cEL2)+1.0(cTs)+1.2(cCR)+1.2(cSH)		Tendon Secondary(CS) 1.0000
	4	cLCB4	Strengt	Add	Г	ULS6 : 1.8M[1]+0.8(cEL2)+1.0(cTs)+1.2(cCR)+1.2(cSH)		*
	5	cLCB5	Strengt	Add	Г	ULS7 : 1.8M[1]+2.0(cEL2)+1.0(cTs)+1.2(cCR)+1.2(cSH)		
	6	cLCB6	Strengt	Add	Г	ULS7 : 1.8M[1]+0.8(cEL2)+1.0(cTs)+1.2(cCR)+1.2(cSH)		
	7	cLCB7	Service	Add	Г	SLS18 : 1.0M[1]+1.3(cEL2)+1.0(cTP)+1.0(cTs)+1.0(cCR)+1.0(cSH)	_	
	8	cLCB8	Service	Add	Г	Transfer: 1.0(cDL)+1.0(cTP)+1.0(cTs)		
*								
						Load Combination		
odify C	oncr	ete Mater	rials			×		View Structure Node/Element Properties Boundary Lo
						<u>م</u>	AS 510	0.5:17 🔹 🔂 PSC Design Material 🔤 Exposure Class
Mater	ial Lis	t						
	-) 🖻 Par	rameters 🔂 Design/Output Position 👻
ID		Name	TCIT	ck R C	пк	Lambda Main-bar Sub-bar		Transfer Load Combination
							Des	ign Parameter PSC Design Data
								Transfer Load Combination X
								Serviceability At Transfer
								dCB7 dCB8
Concr	ete M	aterial Se	ection					
Code	. [~		Grad	e: 🗸		
couc	•				au			<-
Specif	ed Co	mpressive	e Strength	(fc' fck)		: 0 kN/m^2		
⊠ <mark>(</mark> Pr	mpres e-ten:	sive Strer sion)	ngth at Trai	nsfer, fci		0 kN/m^2		
Lig	ht We	ight Conc	rete Factor	(Lambda) :		0		OK Cancel
		м	anual inp	out option	for	strength at transfer		Transfer Load Combination

8. Pretensioned Beam Design at Transfer to AS 5100.5

- Compressive stress of concrete and crack control are checked.
- Excel report and table summary are provided.

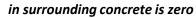

PSC > Design Parameter> AS 5100.5: 17

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AAABACADAEAFAG

57 2 .	Transfer check						1.0					501		500	FHAY	
58	- Transfer stage :	at CS1			Ele	em Part	LCom Name	СНК	FT (N/mm ²)	FB (N/mm ²)	FTL (N/mm ²)	FBL (N/mm ²)	FTR (N/mm ²)	FBR (N/mm ²)	FMAX (N/mm ²)	ALW (N/mm ²)
	Transfer etage :	at 001			→ →	2 [2]	cLCB14	ОК	2.5999	7.4502	2.5999	7.4502	2.5999	7.4502	7.4502	19.20
9						2 J[3]	cLCB14	ОК	6.2791	3.9898	6.2791	3.9898	6.2791	3.9898	6.2791	19.20
i0	1) Concrete compres	sive stress check				3 [[3] 3 J[4]	cLCB14 cLCB14	OK OK	6.2791 9.3452	3.9898 1.1061	6.2791 9.3452	3.9898 1.1061	6.2791 9.3452	3.9898 1.1061	6.2791 9.3452	19.20 19.20
1	Top					4 [4]	cLCB14	ОК	9.3452	1.1061	9.3452	1.1061	9.3452	1.1061	9.3452	19.20
2	- Load combination at t	transfer: cLCB14				4 J[5]	cLCB14	ОК	11.7980	-1.2009	11.7980	-1.2009	11.7980	-1.2009	11.7980	19.20
_						5 [[5] 5 J[6]	cLCB14 cLCB14	OK OK	11.7980 13.6376	-1.2009 -2.9311	11.7980 13.6376	-1.2009 -2.9311	11.7980 13.6376	-1.2009 -2.9311	11.7980 13.6376	19.2
3	- Stress at top surface	(Concrete)				6 [6]	cLCB14 cLCB14	OK	13.6376	-2.9311	13.6376	-2.9311	13.6376	-2.9311	13.6376	19.2
54	ft = '	14.86 (MPa)				6 J[7]	cLCB14	ОК	14.8641	-4.0846	14.8641	-4.0846	14.8641	-4.0846	14.8641	19.2
5						7 [7]	cLCB14	ОК	14.8641	-4.0846	14.8641	-4.0846	14.8641	-4.0846	14.8641	19.2
						7 J[8] 8 I[8]	cLCB14 cLCB14	OK OK	15.4773 15.4773	-4.6613 -4.6613	15.4773 15.4773	-4.6613 -4.6613	15.4773 15.4773	-4.6613 -4.6613	15.4773 15.4773	19.2 19.2
6	- Stress limit					8 J[9]	cLCB14	OK	15.4773	-4.6613	15.4773	-4.6613	15.4773	-4.6613	15.4773	19.2
7	0.6 f _{cp} =	19.20 (MPa)				9 [[9]	cLCB14	ОК	15.4773	-4.6613	15.4773	-4.6613	15.4773	-4.6613	15.4773	19.2
8	f _{cp} = 3	32.00 (MPa)				9 J[10]	cLCB14	OK	14.8641	-4.0846	14.8641	-4.0846	14.8641	-4.0846	14.8641	19.20
	'cp -					10 [[10]	cLCB14	OK	14.8641	-4.0846	14.8641	-4.0846	14.8641	-4.0846	14.8641	19.2
9					<u> </u>	eck Compre	essive Stres	s at Trans	sfer /			<				
0	- Check Stress															
1	f, =	14.86 (MPa) ≤	0.6 f _{co} =	19.20 (MPa)		ок			Che	ck Compre	ssive Stre	ss at Trai	nsfer			
		14.00 (m d) 3	0.01 _{cp} =	10.20 (m u)		on										
2																
5	2) Crack control							1	<u> </u>			1				
2	Bottom	0.05 / 5			Elen	n Part	Top/Bottom	LCom Name	CHK (N/n		0.25*sqrt(fc (N/mm ²)	') 0.5*sqrt(fc') (N/mm ²)	s (mm)	s_max (mm)	fs (N/mm ²)	fsa (N/mm²
		0.25√ <u>f[°]c</u>			•	1 [1]	Bottom	cLCB14	ОК	1.6926 -11.48	74 1.581	1 3.162	3 0.0000	200.0000	-59.3296	160.0
3	- Exposure class :					1 J[2]	Bottom	cLCB14		2.5999 -7.45				200.0000	-41.4847	160.0
4	- Maximum service limi	it load combination :	cLCB14			2 [[2] 2 J[3]	Bottom Bottom	cLCB14 cLCB14		2.5999 -7.45 5.2791 -3.98				200.0000 200.0000	-41.4847 -26.1891	160.0
5	- Maximum service limi	it load combination type:	-			3 [3]	Bottom	cLCB14		5.2791 -3.98			3 0.0000	200.0000	-26.1891	160.0
-						3 J[4]	Bottom	cLCB14		9.3452 -1.10				200.0000	-13.4428	160.0
6	- Stress at bottom surfa					4 [[4] 4 J[5]	Bottom Bottom	cLCB14 cLCB14		9.3452 -1.10 1.7980 1.20				200.0000 200.0000	-13.4428	160.0
7	fb =	4.08 (MPa)				5 [[5]	Bottom	cLCB14	ОК -1	1.7980 1.20	09 1.581	1 3.162	3 0.0000	200.0000	-9.0974	160.0
8						5 J[6]	Bottom	cLCB14	NG -1	3.6376 2.93		1 3.162	3 0.0000	200.0000	14.2382	160.0
9	1) Crack control for fl	exure in prestressed beam	s (General)		∢ ▶ \Che	ck Crack Co	ontrol at Tran	nsfer /	_		<			_		
0	Maximum stress a	•			(see. 8.6.2.	1)				Check Crac	k Control	at Transf	er			
1		4.08 (MPa) > $0.25\sqrt{f_c}$	= 1.58	(MPa)												
2		tensile stress is exceeded,		hebeen si needed												
	Onice maximum		spacing crieck cor													
2																
2																
2		Transfer	Check in Excel R	enort												

9. Transmission Zone Design of Pretensioned Beam to AS 5100.5

- Pretensioned beam design is performed considering stress development in tendons as a bi-linear relationship defined by the transmission length and development length as per AS 5100.5.
- Flexural resistance at ULS within development length.




9. Transmission Zone Design of Pretensioned Beam to AS 5100.5

• Shear resistance at ULS within transmission length.

Load > Temp./Prestress > Tendon Profile A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AAABACADAEAFA 234 3. Shear design for a section - Section type : Box 235 - Strength limit load combination cLCB3 236 - Strength limit load combination type 237 - Factored shear force V = -219.71 (kN) 238 M = 470.81 (kN·m) 239 - Factored moment 0.00 (kN) - Factored axial force N' = 240 - Resistance factor for shear Φ = 0.70 241 242 - Component of prestressing force in direction of the shear force $P_v = \Sigma A_{os} \cdot f_{e(z \cdot dir)} =$ 0.00 (kN) 243 244 2) Determination of the longitudinal strain in concrete (ϵ_x) for shear 245 Longitudinal strain (ε_x). (Eq. 8.2.4.3-1) 246 | M¹/d_v + V¹ | - P_v + 0.5N¹ - A_{pt}f_{po} 247 0.0012 ε_x = $2(E_sA_{st} + E_oA_{ot})$ 248 1 ε_x = 0.0012 249 * ε_r shall be taken within the limits ($0 \le \varepsilon_r \le +3.0 \times 10^{-3}$) 250 * V and M are absolute values. 251 252 * N^{*} is taken as positive for tension and negative for compression. 470.81 265.76] M = Max [M[^], (V[^]-P_v) d_v] = Max 253 where. 470.81 (kN·m) 254 = 595.00 (MPa) 255 f.... = The section is located within the transfer lengt Tendon stress fpo within transfer length 111100 011000 Shear Resistance Diagram

Stress in prestressed tendon when stress

10. Crack Control for the Slab of PSC Composite Girder to AS5100.5

• Slab crack control as per clause 8.6.1. is provided for PSC composite beams. Slab crack review controlled primarily in flexure at the top of the Slab.

						(Civil 2020 - [D:\	PATCH\DEVELO	PMENT\SLAB (
es	Bound	lary I	Load A	nalysis	Results	PSC Push	nover Desi	gn Rating	Query	
® 1	PostCS	Perfor Desig	m Excel in Report Design	Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi Checi	k Compres k Crack Co k Flexure S k Shear Str k Combine k tensile st k stress for pal stress pal stress	-	 sion Strength t a construction sing tendons t service loads n stage	stage		 Load Effect considered for two cases:- a) SLS Load Combination b) For Beams designed for exposure classifications B2, C C2, and U, permanent effects at the SLS. Rebar stress limit based on 8.6.1 (A), (B).
3						Check	crack control f	for flexure at se	rvice loads	
			LCom			SL	.S	Perm	anent	
	Elem	Part	Name	Туре	СНК	sigma_src (N/mm^2)	sigma_src (N/mm^2)	sigma_src (N/mm^2)	sigma_src (N/mm^2)	
\mathbf{F}	1	[[1]	cLCB7	-	ОК	0.0000	0.0000	0.0000	0.0000	
		J[34]	cLCB7	-	OK	-2.0418	-16.2489	0.0000	0.0000	
		[2]	cLCB7	-	OK	-2.1249	-16.9097	0.0000	0.0000	
	2	J[3]	cLCB7	-	OK	0.0000	0.0000	0.0000	0.0000	

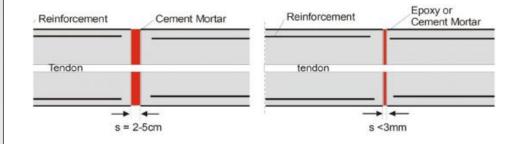
10. Crack control for flexure at Service for the Slab of PSC Composite Beam to AS5100.5

- For rebar stress check due to SLS load combination, rebar stress for Exposure class A, B1 compared with left column stress limit value of Table 8.6.1 (A), (B).
- For Rebar stress check due to permanent effects at the SLS, rebar stress for Exposure class B2, C1, C2 and U, compared with right column stress limit value of Table 8.6.1 (A), (B).

PSC > Design Parameter> AS 5100.5

eba	ar str	es	s ch	eck	due	to S	LSI	oad	C0	mbi	nati	on							(see.	8.6.1)
Са	lculat	ec	l reba	ar st	ress	6																
	σ_{sc}	r	=		-16	.25	(MF	Pa)														
Ne	utral	ax	is de	pth f					e co	mpi	ress	ion	fiber.									
	d _N	IA	=		552	2.48	(m	m)														
					_																_	
	uilibri					_															_	
	Com	_		on)		_																
	Pres				=					(kN	•				_							
	Rein			ent	-					(kN	•											
-	Con	cre	ete	_	=			0.	00	(kN)				_			_				
	T		-)	-	-	-																
	Tens			_	=	-		0	00	(LAN	n .				_						_	
	Pres			_	_	-	0.00 198.10							_					_	-		
-	Rein	TO	rcem	ent	=			98.	10	(KIN)				_							
Re	bar s	tre	ss lii	mit	-																	
-	Stres	ss	limit	by r	ebai	r dia	met	er											(See	Tab	le 8.0	5.1(A))
-	i _b =	-				(m					f _{scr1}		=	18	3.53	(MP	a)					
-	Stres	ss	limit					9											(See	e Tab	le 8.0	5.1(B))
\$	3 =	+			0.00) (m	im)				f _{scr2}		=	20	0.00	(MP	a)				_	
-	Maxi	m	um s	tres	s lin	nit									-			_		_		
1	scr =	I	max(f _{scr1} ,	f _{scr2})		=		2	200.	00	(MPa)									
Re	bar s	tre	ss li																			
	σ_{sc}	-	=		-16	.25	(MF	Pa)	≤	≤		fscr	=	20	0.00	(MP	a)					OK

lebar	stre	ss che	ck di	le t	ор	erm	ane	ent	effe	cts	at t	he SI	_S						(see	e. 8.6	5.1)	
Calcu	ulate	d reba	r stre	SS																		
	$\sigma_{\rm scr}$	=		0.	00	(MF	°a)															
													_									
Neut		dep	th fro					e co	mp	ress	sion	fiber										
	d _{NA}	=		0	.00	(m	m)						_			_			_		_	_
Eauil	ibriu	m forc	es	_									+	-	-	-			_	-	-	-
· ·		ressio											-		-							
		ress	,	=			0.	.00	(kN	1)			+									
	- Reinforcement			=					(kN)				-		-	-			-			
	- Concrete			=					(kN	· .												
(Te	ensio	(0)		_									_	_		_						_
				=			0	00	(kħ	n			+	-	-	-			-		-	-
	- Prestress - Reinforcement			=					•	(kN)			+		-	-			-			
- 1		Jicenne		-					(ru	., 			+			-			_			
Reba	ar str	ess lin	nit											-	-							
- S	tres	s limit l	by rel	bar	dia	met	er											(Se	e Ta	able	8.6.	1(A))
db	=		28.	00	(m	m)				fscri	1	=		14	1.81	(M	Pa)					
- S	tres	s limit l	by rel	bar	spa	cin	3						+	-				(Se	e Ta	able	8.6.	1(B))
s	=		0.	00	(m	m)				f _{scri}	2	=	_	280	0.00	(M	Pa)					
- M	laxin	num sti	ress	limi	it								+	-	-				_		-	-
f _{scr}	=	= max(f _{scr1} ,		f _{scr2})		=			280		.00	(MPa	a)									
Reba	ar str	ess lin	nit ch	eck									+	-	-				_	_	-	-
	σscr	=		0	00	(MF	Pa)	1	5		fscr	-	_	280	0.00	(M	Pa)				0	ĸ


Rebar Stress under Negative Moment (SLS)

Rebar Stress under Negative Moment (Permanent Effect of SLS)

11. Joint Check of Segmental Construction to BS 5400.4

• Shear check and stress check at the joint of segmental construction are provided as per clause 6.3.4.6 and 7.3.3 of BS 5400.4, respectively.

PSC > Design Parameter> BS 5400.4

0.7 (tan α_2) · γ_{fL} · P_h

where

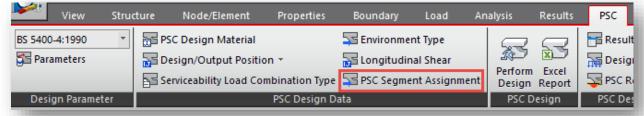
- $\gamma_{\rm fL}$ is the partial safety factor for the prestressing force, to be taken as 0.87;
- $P_{
 m h}$ is the horizontal component of the force after losses appropriate to the construction stage under consideration or, in the case of the completed structure, after all losses.
- α_2 is the angle of friction at the joint. Tan α_2 depends on the type of interface; for roughened and moistened segment faces a value of 0.7 may be adopted for erection phases, and 1.4 at completion.

7.3.3 Other types of connection. Any other type of connection which can be capable of carrying the ultimate loads acting on it may be used subject to verification by test evidence. Amongst those suitable for resisting shear and flexure are those made by prestressing across the joint.

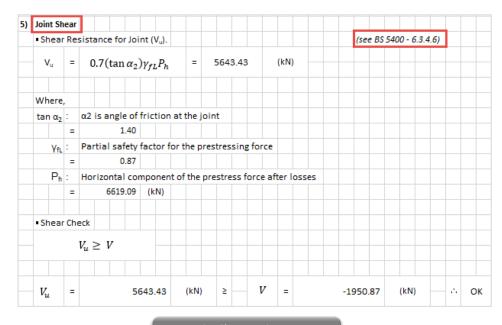
Resin adhesives, where tests have shown their acceptability, may be used to form joints subjected to compression but not to resist tension or shear.

For resin mortar joints, the flexural stresses in the joint should be compressive throughout under service loads. During the jointing operation at the construction stage, the average compressive stress between the concrete surfaces to be joined should be checked at the serviceability limit state and should lie between 0.2 N/mm^2 and 0.3 N/mm^2 measured over the total projection of the joint surface (locally not less than 0.15 N/mm^2) and the difference between flexural stresses across the section should be not more than 0.5 N/mm^2 .

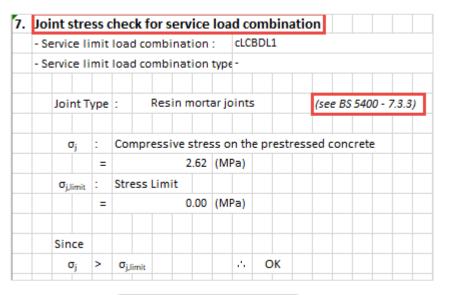
For cement mortar joints, the flexural stresses in the joint should be compressive throughout and not less than 1.5 N/mm^2 under service loads.


Joint Shear Stress Limit

Joint Shear Resistance


11. Joint Check of Segmental Construction to BS 5400.4

· Segment Joint recognition is determined by the PSC Segment Assignment Function.


PSC > Design Parameter> BS 5400.4

• Shear check provides two results: member shear review and joint shear review.

 Serviceability check: the flexural stresses in the joint should be compressive throught and stress limit is different depending upon Joint Type (Resin/Cement). 0 MPa is for resin and 1.5 Mpa for cement.

Joint Shear Resistance

Joint Shear Stress Limit