

Nota de Lanzamiento

Fecha de Lanzamiento: Junio 2020

Versión del Producto : Civil 2020 (v3.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Civil Engineering

Mejoras

- 1. Edición por lotes del perfil del tendón
- 2. Datos de espesor del elemento Plane Strain
- 3. Generación automática de perfil de tendón Tipos de secciones prefabricadas de Italia
- 4. Análisis de etapas de constructivas no lineal geométrica con elementos de plate
- 5. Set-back (Retroceso) para el saddle del puente colgante
- 6. Fuerzas concurrentes de elementos beam para el análisis tiempo historia
- 7. Diseño por AASHTO LRFD 8ª edición Sección PSC / Compuesta, Sección RC
- 8. Diseño por AASHTO LRFD 8ª edición Sección compuesta de acero
- 9. Combinación de carga por AASHTO LRFD 8ª edición Generación automática
- 10. Efecto ortogonal de la carga sísmica: AASHTO LRFD
- 11. Cargas de tráfico ferroviario según AS 5100.2
- 12. Plataforma de carga pesada según AS 5100.2
- 13. Evaluación (Rating) de vehículos según AS 5100.2
- 14. Cargas de tráfico horizontales por AS 5100.2
- 15. Evaluación (Rating) de vehículos según CS 454
- 16. Diseño de viga presforzada según BS 5400
- 17. Mejora de la evaluación del puente según CS 454
- 18. Diseño de concreto reforzado según las especificaciones del IRS
- 19. Informe de diseño polaco

1. Edición por lotes del perfil del tendón

- · La edición por lotes es posible para múltiples perfiles de tendones al mismo tiempo..
- · Nombre del tendón, propiedad del tendón, número de tendones típicos, grupo de tendones
- Load > Temp./Prestress > Tendon Profile > Change Tendon Profile

2. Datos de espesor del elemento Plane Strain

- En versiones anteriores, el espesor del elemento plane strain se fija como 1 m.
- Ahora, el espesor se puede definir para el elemento de deformación plano, que se utilizará para calcular el peso propio..

3. Generación automática de perfil de tendón - Tipos de secciones prefabricadas de Italia

• Se agregaron VH80N, VH100N, VH130N, VH140, VH150 de Italia para la auto-generación de perfiles de tendones.

Tendon Template		- 🗆 ×	Auto Generation	
Use Prefix Name	: strand		Name prefix : strand Tendon Property : Tendon	· · ·
Assigned Elements	. [Add ~	Tendon Group : Default	~
No Name	Property	Add	Code : Italy	\sim
1 strand_081	Tendon	Modify	Type : Italy-VH	\sim
2 strand_082	Tendon		Nome VH150	
3 strand_083	Tendon	Set Property	VH80N	
4 strand_084	Tendon	Move/Copy	Origin Point : VH100N	m
5 strand_085	Tendon		VH130N	
6 strand_086	Tendon	Delete		
/ strand_08/	lendon T 4	Import	OK	Cancel
o strand_080	Tendon	Euport		
10 strand 090	Tendon	Export		
11 strand 091	Tendon	Auto Generation		
12 strand 092	Tendon	Report Norse		
13 strand_093	Tendon	Heset Name		
14 strand_094	Tendon			
15 strand_095	Tendon			
16 strand_096	Tendon	OK		
17 strand_097	Tendon	Cancel		
18 strand_098	Tendon			
19 strand_099	Tendon	 Apply 		
Tendon				
Plane View	1	2.500 m		
Elevation View	4 @ 1.420 m			
Section				
···· •		$\lambda = 1$		
	2 @ 0.900 m	·\ /./ =		
	2 @ 0.500 m			

4. Análisis de etapas de constructivas no lineal geométrica con elementos de plate

- El análisis de la etapa de construcción se puede realizar considerando los efectos geométricos no lineales del elemento de plate.
- El desplazamiento tangente inicial puede aplicarse a elementos de plate así como a elementos de beam.
- Analysis > Analysis Control > Construction Stage > Initial Displacement for C.S

Construction Stage Analysis Control Data	×
Final Stage Cable-Pretension Force Control Exact Stage Other Stage CS22 Other stage Cable-Pretension Force Control	1d O Replace
✓ Restart Construction Stage Analysis Select Stages for Restart ✓ Analysis Option ✓ Convert Final Stage Member Forces to Initial Forces ✓ Independent Stage ● Accumulative Stage ● Independent Stage ● Accumulative Stage ● Include Equilibrium Element Nodal Forces ● Change Cable Element to Equivalent Truss Ele ● Include P-Delta Effect P-Delta Analysis Control □ Include Time Dependent Effect Time Dependent Effect Control □ Include Time Dependent Effect Time Dependent Effect Control □ Load Cases to be Distinguished from Dead Load for C, S, Output ● All No Load Case Name Type Case1 Cas ✓ Consider Stress Decrease at Lead Length Zone ● Calculate Control © Constant : Stress + Beam Section Property Changes ○ Constant ○ Constant © Change with Tende Frame Output Calculate Output of Each Part of Composite Ste □ Self-Constrained Forces & Stresses	proces for Post C, S, ment for Post C, S, res p P post-tension nn ction Message Window Mess
Save Output of Current Stage(Beam/Truss) Remove Construction Stage Analysis Control Data	CONSTRUCTION STEP NO. : 86 / 89 STAGE NO : 65 STEP NO : 1 ENTRY PHASE FOR RENUMBERING ENTRY UMBERING FOR
Construction Stage Analysis Control	ENTRY FORM_STIFF_MASS_LOAD THE INDIVIDUAL ELEMENT STIFFNESS AND LOAD MATRICES WILL NOW BE FORMED. ELEMENT NO.: 2414 OF 2466 ENTRY SOLUTION PHASE INCREMENT NO.: 1 ITERATION NO.: 1 DISPL. NORM: 0.100E+01 TOTAL ITERATION: 244 INCREMENT NO.: 1 ITERATION NO.: 2 DISPL. NORM: 0.118E-01 TOTAL ITERATION: 245 INCREMENT NO.: 1 ITERATION NO.: 3 DISPL. NORM: 0.255E-03 TOTAL ITERATION: 246 ()) Command Message Analysis Message (

5. Set-back (Retroceso) para el saddle del puente colgante

- En un puente colgante de varios tramos, el sillín de la torre superior se puede mover con respecto a la torre antes de comenzar la construcción del cable..
- El Saddle (sillín) se puede simular con Elastic Link: tipo de silla de montar.

6. Fuerzas concurrentes de elementos beam para el análisis tiempo historia

- Fuerzas concurrentes para análisis tiempo-historia.
- · Sólo elementos Beam.

AASHTO LRFD 8th

Peer Review

Nos gustaría expresar nuestro agradecimiento a algunos de nuestros expertos influyentes por la revisión de las actualizaciones en el código: Sungki Choi (Jacobs - Colorado, USA) Vinceng Nganga (Jacobs - Missouri, USA) Suthichai Saelim (HDR - Massachusetts, USA)

7. Diseño por AASHTO LRFD 8ª edición - Sección PSC / Compuesta, Sección RC

- El nuevo estandar de AASHTO LRFD puede ser aplicado para las distintas funciones de diseño.
- Concreto Reforzado, Cajón presforzada, Compuesta presforzada.

		1. Design Condition	
PSC > Design	1 > AASHTO LRFD 17	Design Code Elen	nent Node(I/J)
		AASHTO-LRFD2017 1	6 I
View Structure	e Node/Element Properties Boundary Load Analysis Results <mark>PSC</mark> Pushover	Section Properties	
	BSC Design Material BS Concrete Allowable Stress Load Case B Result Tables y	- Gross section	Torsional design for a section
Rarameterr		H 117.992 (iii)	Case of Vmax
	Perform Excel	492.120 (III)	- Section type · Segmental-Box
	PSC Segment Assignment Design Report 🖓 PSC Result Diagram	C ₂₂ 75 134 (in)	- The Strength Limit Load Combination CLCB1
Design Parameter	PSC Design Data PSC Design PSC Design Results	- Transformed section	- Factored torsional moment T _u = -111236.26 (kips in)
		H 117.992 (in)	- Factored shear force V _n = 1809.62 (kips)
		B 492.126 (in)	- Factored moment M. = 1012397.15 (kips-in)
Torsional effect	s shall be investigated where:	C _{zp} 43.709 (in)	- Eactored axial force N. = -12515.30 (kips)
		C _{zm} 74.283 (in)	- Resistance factor for shear (-0.00)
$T_u > 0.25 \phi T_{cr}$	(5.7.2.1-3)		- Component of prestressing force in
		Materials	direction of the shear force $V = 54$ f 413.49 (kins)
 For solid shapes: 		- Concrete	v _p = 2/ps ⁿ e(2dir) = 410.40 (Mp5)
· i or sond shapes.		fo	1) Notation
	1 2	(ksi)	
$T = 0.126K\lambda \sqrt{f'}$	4 <u>cp</u> 5.7.2.6—Maximum Spacing of Transverse	7.000	$A_0 = Area enclosed by the shear flow path, including any area of holes therein$
$\Gamma_{cr} = 0.12011/(\sqrt{J_c})$	<i>p_c</i> Reinforcement	* β ₁ : 0.85 if fc is lower t	
 For hollow shape 	The encoder of the transverse minforcement shall	 Prestressing steel informatio 	p _h = Perimeter of the centerline of the closed
 For honow shape 	The spacing of the transverse remiorcement shan	No. Tendon T	coverA _{cp} (p _c)
	not exceed the maximum permitted spacing, s _{max} ,	1 0 10 001 5	= 1113.426 (in)
$T = 0.126K\lambda \sqrt{f'}2$	<i>A b</i> determined as:		A _{cp} = Total area enclosed by outside perimeter
$I_{cr} = 0.120 \mathrm{K} / \sqrt{J_c} 2$	140 ⁰ e	2 S_L2_CS1 B	of the concrete section.
	• If $y < 0.125 f'$ then:	3 3_L1_C31 B	= 35799.879 (in ²)
in which:	• If $v_u < 0.125 f_c$, then.	5 S 16 CS1 B	p _o = The length of the outside perimeter of
	= -0.8d < 24.0 in (5.7.2.6.1)	6 S B4 CS1 B	concrete section.
f pc	$S_{max} = 0.60 u_y \le 24.0$ III. $(5.7.2.0^{-1})$	7 S L5 CS1 B	= 1113.426 (in)
$K = \sqrt{1 + \frac{1}{0.126\lambda \sqrt{f'}}}$	= ≤ 2.0	8 S R1 CS1 B	
V 0.120/V J c	• If $v_u \ge 0.125 f'_c$, then:	9 S_R2_CS1 B	2) Checking Torsional Effects
		10 S_L7_CS1 B	Torsional cracking moment (T _{or}).
	$s_{max} = 0.4d_y \le 12.0$ in. (5.7.2.6-2)	11 S_R7_CS1 B	be = 16.375 (in) : The effective thickness of shear flow path of elements
	икал у	12 S_L4_CS1 B	T _{or} = 0.126 K M c 2A ₀ b _e = 781714.14 (kips·in) (Eq. 5.7.2.1-5)
		13 S_L3_CS1 B	
	where:	14 S_R8_CS1 B	$T_u = -111236.262$ (kips·in) $\leq 0.25\Phi T_{cr} = 175885.68$ (kips·in) (Eq. 5.7.2.1-3)
		15 S_R6_CS1 B	∴ T _u ≤ 0.25ΦT _{cr} , Ignore Torsional Effects.
	v_u = shear stress calculated in accordance with	16 S_R5_CS1 B	
	Article 5.7.2.8 (ksi)	* d _p : Distance from extr	Check combined torsional and shear (Eq. 5.12.5.3.8c-6)
	d - affactive shear donth as defined in	- I - I - I - I - I - I - I - I - I - I	
	a_v – effective shear deput as defined in		$b_V d_V$ + $2A_0 b_e$ = 0.00 (KSI) \ge 0.4/4 $\sqrt{r_c}$ = 0.00 (KSI) OK
	Article 5.7.2.8 (in.)		

Civil 2020

8. Diseño por AASHTO LRFD 8ª edición - Sección compuesta de acero

- El nuevo estandar de AASHTO LRFD puede ser aplicada a las distintas funciones de diseño.
- Steel Composite (Viga de acero compuesta).
- Design > Composite Design > AASHTO LRFD 17

J	,	Code	AASHTO-LRFD 2017		
		Element	3		
View Structure Node/Element Propertie	es Boundary Load Analysis Results PSC Pushover Design Rating Query	Position			
AASHTO-LRFD12(US) * AASHTO-LRFD17(US) *	SSRC79 AASHTO-LRFD17 SSRC Design v Steel Ortho. Deck Design v	Moment Type	Beam		
mmon ara. *	Section Perform for Design Batch Design				
	Design	I. Design Condition (Posi	tive Flexure)		
Design Parameters	Composite Steel Girder Design Parameters	1. Section Properties			
	Code : AASHTO LEED17 Update by Code	1) Slab Properties	in		
Design Material		B _s = 240.000	in		
Load Combination Type	Strength Resistance Factor	t = 5.000	in		
Longitudinal Reinforcement	Begictance factor for fracture (Philup)	f.' = 3.000	ksi		
Transverse Stiffener	Begistance factor for avial come (Phile)	E. = 3155.924	ksi		
	Resistance factor for flexure (Phi_f)	A _r = 0.000	in²		
	Resistance factor for shear(Phi_v)	F _{yr} = 40.000	ksi		
g Design Position	Resistance factor for shear connector(Phi_sc) 0.85				
Position for Design Output	Resistance factor for bearing(Phi_b)	2) Girder Properties			
Shear Connector	Girder Tupe for Boy /Tub Section	[Section]			
Fatique Parameters	Single Box Sections Multiple Box Sections	b _{fc} = 130.000	in b _{ft} = 106.000 in		
Curved Bridge Infe	Consider St, Venant Torsion and Distortion Stresses	t _{fc} = 3.000	in $t_{ft} = 1.300$ in		
general curved bridge info	Ontion For Strength Limit State	D = 130.384	in t _w = 1.500 in		
Deck Overhang Loads	Appendix A6 for Negative Flexure Resistance in Web Compact	H = 154.500			
Design Tables	/ NonCompact Sections	Position	Material Thick(in) f	(ksi) f.(ksi)	Note
	Mint (=1, 5hinkly in Positive Flexure and Compact Sections(6, 10, 7, 1, 2-5) Rest-buckling Tapping-field Action for Shop Resistance/6 10, 9, 3, 2)	Compression Flange	A36 3.000 36	.000 58.000	
3 Design	Post-buckling Tension-Held Action for Shear Hesistance(0, 10, 3, 0, 2)	Tension Flange	A36 1.300 36	58.000 58.000	less than 2 in.
	Strength Limit State-Flexure	Web	A36 1.500 36	6.000 58.000	less than 2 in.
5 Excel Report	Strength Limit State-Shear				
Design Result Tables	Service Limit State	[Design Strength]			
	Constructionity Zetique Limit State	F _{yc} = 36.000	ksi (Compression Flange Yield	Strength)	
🗄 Design Result Diagram	Shear Connectors, Longitudinal Stiffeners, Bearing Stiffener	F _{yw} = 36.000	ksi (Web Yield Strength)		
	-	$F_{yt} = 36.000$	ksi (Tension Flange Yield Stren	gth)	
		$E_s = 29000.000$	ksi (Elastic Modulus of Steel)		
		2) Transverse Chifferen	Descention		
		3) Transverse Stiffener	e f (ksi) H(in)	B(in) t (in)	t.(in) d.(in)
		Web 1Sir	le 35.000 10.000	10 000 2 0	
		130	10.000	10.000 2.0	2.000 100.000
Pa	arámetros de Diseño		Reporte de Dis	eño de Excel	

MIDAS

9. Combinación de carga por AASHTO LRFD 8ª edición - Generación automática

- Factores de carga para evento extremo.
- Factores de carga para fatiga.
- Result > Load Combinations > AASHTO LRFD 17

						Load Combinations
Table 3.4.1-1—Load Co	ombination	is and Load Facto	rs		100	General Steel Design Concrete Design SRC Design Composite Steel Girder Design Load Combination List Load Cases and Factors
DC DD DW DW EH EV ES Combination Limit State Strength II Yp Strength II Yp Strength IV Yp	LL IM CE BR PL LS 1.75 1 1.35 1 - 1 - 1 - 1	WA WS WZ 1.00 1.00 1.4 1.00	FR TU TG 1.00 0.50/1.20 Yrg	Use One of These SE EQ BL IC Ysz Ysz Ysz Tsz	at a Time CT CV 	No Name Active Type Description Image: Sect CB3 Strengt Add Strength-1:1.75M[1].0.5 Image: Sect CB3 Strength-1:1.75M[1].0.5 Image: Sect CB3 Strengt Add Strength-1:1.75M[1].0.5 Image: Sect CB3 Strength-1:1.75M[1].0.5 Image: Sect CB3 Strengt Add Strength-1:1.75M[1].0.5 Image: Sect CB3 Strength-1:1.75M[1].0.5 Image: Sect CB3 Strengt Add Strength-1:1.75M[1].0.5 Image: Sect CB3 Strength-1:1.35M[1].0.5 Image: Sect CB3 Strengt Add Strength-1:1.35M[1].0.5 Image: Sect CB3 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strengt Add Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strengt Add Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect CB3 Strength-1:1.35M[2].0.5 Image: Sect
Strength V γ_p	1.35 ×EO	Table 3.4.1-1—	Load Combinations and Lo	ad Factors		12 scLCB1 Strengt Add Strengtrilli:1.0W[1].0.5 13 scLCB1 Strengt Add Strengtrilli:1.0W[2].0.5 14 LUCP Characterization Code : AASHTO-LRFD17 ▼
τρ τρ Exterme γρ Event II Σ Service I 1.00 Service II 1.00 Service IV 1.00 Fatigne I— - LL, IM & CE -	1.50 1.00 1.30 0.80 	Load Combination imit State Strength I (unlex noted)	$ \begin{array}{c c} DC \\ DD \\ DW \\ EH \\ ES \\ IM \\ ES \\ IM \\ EL \\ CE \\ PS \\ BR \\ CR \\ PL \\ SH \\ LS \\ WA \\ W \\ \gamma_{p} \\ 1.75 \\ 1.00 \\ - \end{array} $	75 WZ FR TU 1.00 0.501.20	TG SE EQ BL IC CT YTG Y2E - - -	14 StcC01 Strengt Add StrengtHill:10W[2],0.5 15 scLCB1 Strengt Add StrengtHill:10W[2],0.5 16 scLCB1 Strengt Add StrengtHill:10W[2],0.5 17 scLCB1 Strengt Add StrengtHill:10W[3],0.5 18 scLCB1 Strengt Add StrengtHill:10W[3],0.5 19 scLCB1 Strengt Add StrengtHill:10W[3],0.5 20 scLCB2 Strengt Add StrengtHill:10W[3],0.5 21 scLCB2 Strengt Add StrengtHill:10W[4],0.5 22 scLCB2 Strengt Add StrengtHill:10W[4],0.5 22 scLCB2 Strengt Add StrengtHill:10W[4],0.5
Fatigue II— — — <i>LL, IM & CE</i> only	0.75	Strength II Strength II Strength IV Strength V	$\frac{\gamma_p}{\gamma_p} = \frac{1.35}{1.00} = \frac{1.00}{-1.00} = \frac{1.00}{$	1.00 0.50/1.20 00 - 1.00 0.50/1.20 1.00 0.50/1.20 00 1.00 1.00 0.50/1.20 1.00	γrg γse γrg γse γrg γse γrg γse γrg γse	Copy Import Auto Generation Spread Sheet Form = Import Seismic Load Combination File Name: D:\West Browse Load Factor for Settlement : 1
		Event I Extreme	1.00 920 1.00 -	1.00 -	<u> </u>	Structural Plate Box Structures(Metal Box Culverts)
		Service II Service II Service III Service IV Fatigue I— LL, IM & CE only Extigue II	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 1.00 1.00 1.00/1.20 1.00 1.00/1.20 1.00 1.00/1.20 00 - 1.00 1.00/1.20 	Y/F Y32 Y76 Y32 1.00	Live Load Factor for Service III : 0,8 Condition for Temperature Deformation Check All Other Effects OK Cancel
		LL, IM & CE only	Combio	factores do Com		Generación automática de combinaciones de carga
			Cambios en	Tactores de Carg	d	

10. Efecto ortogonal de la carga sísmica: AASHTO LRFD

• El efecto ortogonal de las cargas sísmicas se puede incluir en la autogeneración de combinaciones de carga para AASHTO-LRFD 16 y 17.

General Steel Design Concrete Design SHC Design Composite Steel Girder Design	Automatic Generation of Load Combinations	
Load Combination List Load Cases and Factors	Ontion	
No Name Active Type Description * LoadLase Factor	● Add O Replace I Add Envelope	
	Cada Salaatian	
	Steel Concrete SBC Steel Composite	
	Manipulation of Construction Stage Load Case	or Orthogonal Effect
	ST Only O CS Only O ST+CS Set Load Cases to	or Orthogonal Effect
	Orthogonal Lo	ads Group
	Load Modifier : 1 () Both (±)	O Comb, only
		nonal Load Cases
		X-dir(HS)
Copy Import Auto Generation Spreau Sneet Form Copy Into Steet Design	Live Load Transverse	Y-dir(RS)
File Name: D·₩95 기획₩2020_상반기₩EN_AASHTO Orthogor Browse Make Load Combination Sheet Close		7 46/00)
	Load Factor : U.5 Ventical	Z-uir(h3)
.cad Combinations – D X	Load Case Factor Add	Trop V
General Steel Design Concrete Design SRC Design Composite Steel Girder Design Load Cases and Factors	MV 0,5 Modify 1 V dia	y, Hall, V
No Name Active Type Description LoadCase Factor		Y-uir(2-i
2 gLCB1 Active Add Strength-II:25C-91.50 Active Add Strength-II:25C-91.51 2 gLCB2 Active Add Strength-II:25C-91.51 ±22(ST) 1.0000 2 gLCB2 Active Add Strength-II:25C-91.51 ±22(ST) 1.0000		
Sigues Add Externet: DDC+1.0D Add(N(N)) 0.0000 4 gLCB4 Active Add Externet: DC+1.0D MV(MV) 0.5000 5 gLCB4 Active Add Externet: DC+1.0D MV(MV) 0.5000 6 GLCB4 Active Add Externet: DC+1.0D MV(MV) 0.5000	Consider Orthogonal Effect (100 : 30 Bule)	
S BLCDS Active Add Extreme-I::00C+1:00 2/000/2000 1/0000/2000 6 gLCDS Active Add Extreme-I::0DC+1:00 * * 7 gLCPG Active Add Extreme-I::0DC+1:00 * *	Set Load Cases for Orthogonal Effect	Modifu D
8 gLCB8 Active Add Extreme-I::1.0DC+1.0D 9 gLCB9 Active Add Extreme-I::1.0DC+1.0D		initiality b
10 gLCB10 Active Add Seismic:1.250C+1.50	Load Eactor for Settlement :	OK C
12 gLCB12 Active Add Seismic: 125DC+1.5D 13 gLCB13 Active Add Seismic: 125DC+1.5D	Structural Plate Box Structures(Metal Box Culverts)	
14. gLCB14 Active Add Seismic: 125DC+15D 15. gLCB15 Active Add Seismic: 125DC+1.5D	Live Load Factor for Service III : 0.8 Definició	n de casos o <u>rtog</u>
16 gLCB16 Active Add Seismic:1.25DC+1.5D 17 gLCB17 Active Add Seismic:1.25DC+1.5D	Condition for Temperature	de espectro
18 gLCB18 Active Add Seismic:1.25DC+1.5D 19 gLCB19 Active Add Seismic:1.25DC+1.5D	Deformation Check O All Other Effects	
20 gLCB20 Active Add Seismic:1.25DC+1.5D 21 gLCB21 Active Add Seismic:1.25DC+1.5D		
22 gLCB22 Active Add Seismic:1.25DC+1.5D	OK Cancel	

11. Cargas de tráfico ferroviario según AS 5100.2

- Cargas de tren definidas por el ususario, 300 LA, 150 LA
- · Impacto distinto (dynamic allowance) para momento y todos los otros efectos
- Load > Moving Load > Moving Load Code> Australia

12. Plataforma de carga pesada según AS 5100.2

• Cargas de Plataforma definidas por el usuario y HLP320, HLP400

Load > Moving Load > Moving Load Code> Australia

13. Evaluación (Rating) de vehículos según AS 5100.2

• Vehículos de evaluación definidos por el usuario T44, L44

Load > Moving Load > Moving Load Code> Australia

14. Cargas de tráfico horizontales por AS 5100.2

• Las fuerzas centrífugas, las fuerzas de tracción y frenado se pueden generar como casos de carga estática.

15. Evaluación (Rating) de vehículos según CS 454

- Todos los modelos 1 (normal traffic, 26 toneladas, 18 toneladas, 7.5 toneladas, 3 toneladas)
- Factor de impacto, factor de flujo de tráfico, factor de línea

Load > Moving Load > Moving Load Code> BS

16. Diseño de viga presforzada según BS 5400

- Estado límite ultimo: Flexión, Cortante, Torsión
- Estado límite de servicio: Esfuerzo, Fisura

PSC > Design Para	meter > BS 5400				
				A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AAABACAD 1. Design Condition Design condition	AEAFAC
FEE			-	BS 5400-4:1990 16 J	
				5 Section Properties	
				S Section Type	
		Fine Dat LCom Tune OVK Cracked/ V Vc	Vp	Gross section	
		State Full Name Fype Oric Uncracked (kN) (kN) 31 [31] cLCB1 FX-MAX OK Uncracked 3697.7653 5600.0	(kN) 276 1069.4979) H 3000.000 (mm) A ₈ 6.209E+06 (mm ²) S _t 6.505E+09	(mm ³)
esign Parameters	×	31 J[32] cLCB1 FX-MAX OK Uncracked 4300.0696 6718.1 32 J[32] cLCB1 FX-MAX OK Uncracked 4387.9569 6718.1	.85 2089.7983 466 2089.7048	0 B 8500.000 (mm) I _v 7.867E+12 (mm ⁴) S _b 4.393E+09	(mm³)
an Code : BS 5400-4: 1990 V		32 J[33] cLCB1 FX-MAX OK Uncracked 4994.0855 7756.	374 3043.3164	1 C ₁₀ 1209.410 (mm)	
at Parametere		33 [33] cLCB1 FX-MAX OK Uncracked 5096.0264 7756. 33 J[34] cLCB1 FX-MAX OK Uncracked 5719.3801 8677.	81 3043.1926 702 3899.5325	2 C _{am} 1790.590 (mm)	
User Input Data Modify Design Parametr	Pr5	34 [[34] CLCB1 FX-MAX OK Uncracked 5783.4813 8676.4	366 3898.9226	3 - Transformed section	
Principal Street Limitation		34 J[55] CLCB6 FZ-MAX OK Uncracked 6490.1366 6480.	517 2029.8289	4 H 3000.000 (mm) Ag 6.439E+06 (mm ²) St 6.790E+09	(mm³)
Serviceability Limit States	Construction Stage	35 J[36] cLCB8 FZ-MAX OK Uncracked 7429.1805 4429. 36 J[36] cLCB9 FZ-MIN OK Uncracked -7798.3355 4428.1	10 291.5115	5 B 8500.000 (mm) I _v 8.116E+12 (mm ⁴) S _b 4.497E+09	(mm ³)
Comp. 20 N/mm ²	Comp. 20 N/mm ²	36 J[37] cLCB9 FZ-MIN OK Uncracked -6962.3546 5153.	356 963.5172	6 C ₁₀ 1195.243 (mm)	
Tens. 1 N/mm ²	Tens. 1 N/mm ²	37 [[37] cLCB9 FZ-MIN OK Uncracked -6962.4360 5152. 37 J[38] cLCB1 FX-MAX OK Uncracked -5996.8881 6486.0	49 963.1935 341 2181.7369	7 C _{am} 1804.757 (mm)	
		38 [[38] cLCB1 FX-MAX OK Uncracked -6306.8062 8359.	16 3162.6951	8	
itput Parameters		38 J[39] cLCB1 FX-MAX OK Uncracked -5283.1850 8926. 39 J[39] cLCB1 FX-MAX OK Uncracked -5587.7388 8925.	304 3678.2591	9 Partial Safety Factors	
Serviceability Limit States	Ultimate limit states	39 J[40] cLCB1 FX-MAX OK Uncracked -4564.0556 8883.0	78 3652.2015	Partial Safety Factors for Ultimate Limit State	
Concrete stress limitation under service loads	Bending resistance	40 [40] CLCB1 FX-MAX OK Uncracked -4887.5397 7726.5 40 J[41] CLCB1 FX-MAX OK Uncracked -3865.8775 7147.4	73 2895.2502 793 2354.1593	1 Characteristic	
Concrete stress limitation at Construction Stage	Shear resistance	41 [[41] cLCB1 FX-MAX OK Uncracked -4166.7548 7146.	62 2353.7085		
Principal stress under service loads	Torsional resistance	42 [42] cLCB1 FX-MAX OK Uncracked -2272.7099 5622	340 968.2604	2 Inclosed Construction 1.1	
Principal stress at Construction Stage		42 J[43] cLCB1 FX-MAX OK Uncracked -1725.7445 4611.1	158 59.1826 441 59.1790	3 yms for Reinforce/Presidess 1.15	
Tensile stress for prestressing steel		43 J[44] CLCB1 FX-MAX OK Uncracked -1178.8167 4548.4	11.5920	4	
	Select All Unselect All	44 [44] cLCB1 FX-MAX OK Uncracked -1178.8348 4548.0 44 J[45] cLCB1 FX-MAX OK Uncracked -631.8694 4521.0	63 11.5920 362 2.0371	5 - Partial Safety Factors for Serviceability Limit State	
	OK Cancel	45 [45] cLCB1 FX-MAX OK Uncracked -631.8804 4521. 45 J[46] cLCB1 FX-MAX OK Uncracked -84.9151 4502.	175 2.0371 167 2.7656	6 Type of Stress γ _{mc} for concrete	
		46 [40] CLUB1 FX-MAX OK Uncracked -04.9273 45023 46 J[47] CLCB1 FX-MAX OK Uncracked 462.0381 4500.0	374 21.8337	8 Triangular Compressive 1.25	
		47 [[47] cLCB1 FX-MAX OK Uncracked 462.0311 4500.	99 21.8327 881 356 1046	9 Uniform Compressive 1.67	
Parámetros	de Diseño PSC	48 [48] cLCB1 FX-MAX OK Uncracked 1005/3905 4852.1	349 356.0749	0 Pre-tension 1.25	
Parametros	de Diseño FSC	> Shear Strength /	<	1 Post-tension 1 55	
		😟 MIDAS/Civil 😂 Check Flexure Strength 🔯 Check Shear Strength		2	
					+++
		Tabla de Resultado de PSC		4 - concrete	
				Devente Detellada da Disaña PSC	
				Reporte Detallado de Diseño PSC	

17. Mejora de la evaluación del puente según CS 454

- Revisión de estado límite de servicio para sección tipo clase 3
- Revisión de estado límite ultimo y servicio para tendones no adheridos.

Rating > Bridge Rating Design > CS 454/19

Section for

	Element	Part	Class	Rating Case	Load Effect	sig_c (N/mm²)	sig_c_lim (N/mm²)	sig_t (N/mm²)	sig_t_lim (N/mm²)	A	Check						
	12	J[14]	Class 3	SLS1_Fzz(Min)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	ОК						
	12	J[14]	Class 3	SLS1_Mxx(Max)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	ОК						
C	12	J[14]	Class 3	SLS1_Mxx(Min)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	OK						
n for Assessment Check 🛛 🗸 📖	12	J[14]	Class 3	SLS1_Myy(Max)	Positive	17.2856	🖌 A 🛛 B	CDEF	FGHIJ	K L N	IN O	PQ	RS				
	12	J[14]	Class 3	SLS1_Myy(Min)	Positive	8.1046	271 5.Servi	eability Lim	nit State for a Se	ction							
	12	J[14]	Class 3	SLS1_Mzz(Max)	Positive	8.1046	272 Class	3 Limit Check							1		
	12	J[14]	Class 3	SLS1_Mzz(Min)	Positive	8.1046	273	Check If Stree	sses are Within C	lass 3 Limits	5						
	13	[14]	Class 3	SLS1_Fxx(Max)	Positive	15.6500	274	* For Bon	ded Tendons								
	13	[14]	Class 3	SLS1_Fxx(Min)	Positive	8.1046	275	Compressio	on								
dd/Replace 🛛 Delete	13	[[14]	Class 3	SLS1_Fyy(Max)	Positive	8.1046	276 - Ser	vice limit loa	d combination :	SLS1							
	13	[[14]	Class 3	SLS1_Fyy(Min)	Positive	8.1046	277 - Ser	vice limit loa	d combination typ	be: MY-MA	x						
	13	[[14]	Class 3	SLS1_Fzz(Max)	Positive	16.5127	278										
ion	13	[14]	Class 3	SLS1_Fzz(Min)	Positive	15.2245	279	σ _{emin} ≤	0.625 feu =	Octimit =	2	5.00	(MPa	a) (6			
	13	[14]	Class 3	SLS1_Mxx(Max)	Positive	15.2245	280		Yme	C, ITTE							
	13	[14]	Class 3	SLS1_Mxx(Min)	Positive	15.2245	281										
	13	[14]	Class 3	SLS1_Myy(Max)	Positive	17.2856	282	Tension									
	13	[14]	Class 3	SLS1_Myy(Min)	Positive	8.1046	283 - Ser	vice limit loa	d combination :	SLS1							
	13	[14]	Class 3	SLS1_Mzz(Max)	Positive	8.1046	284 - Ser	vice limit loa	d combination typ	oe: MY-MA	ux IIII						
Category	13	[14]	Class 3	SLS1_Mzz(Min)	Positive	8.1046	285										
	13	J[15]	Class 3	SLS1_Fxx(Max)	Positive	14.2445	200	$\sigma_{c,max} \leq \sigma$	$\sigma_{limit} * DF + \sigma_r$	ebar =	$\sigma_{t,limit}$	=	-11.31	((MPa)		
lass 1	13	J[15]	Class 3	SLS1_Fxx(Min)	Positive	7.6422	207										
	13	J[15]	Class 3	SLS1_Fyy(Max)	Positive	7.6422	280	where									
lass 2	13	J[15]	Class 3	SLS1_Fyy(Min)	Positive	7.6422	290	a · Te	encile stress on th	e prestress	ed concre	ta					
	13	J[15]	Class 3	SLS1_Fzz(Max)	Positive	15.8003	291		-11 29	(MPa)	cu concre						
lass 3	13	J[15]	Class 3	SLS1_Fzz(Min)	Positive	13.8680	292	General C	ompressive stress	s on the pres	stressed o	oncrete					
	13	J[15]	Class 3	SLS1_Mxx(Max)	Positive	12.8885	293	= =	18.12	(MPa)							
	13	J[15]	Class 3	SLS1_Mxx(Min)	Positive	12.8885	294	σum : Fl	lexural tensile str	esses for cli	ass 3 men	bers (Ta	able 25)				
on Type for Class 3	13	J[15]	Class 3	SLS1_Myy(Max)	Positive	16.3155	295	=	-7.80	(MPa)							
ion rype for class 5	13	J[15]	Class 3	SLS1_Myy(Min)	Positive	7.6422	296	DF : D	epth factor for cla	ass 3 memb	ers based	on the d	lepth of mer	mber			
vne C : Pre-tensioned tendons	13	J[15]	Class 3	SLS1_Mzz(Max)	Positive	7.6422	297	=	0.70								
ype c . Fre-tensioned tendons	13	J[15]	Class 3	SLS1_Mzz(Min)	Positive	7.6422	298	Aconc.T : A	rea of concrete in	tensile sect	ion						
istributed close to the tension	14	[15]	Class 3	SLS1_Fxx(Max)	Positive	15.1026	299	=	251932.18	(mm ²)							
aces	14	[15]	Class 3	SLS1_Fxx(Min)	Positive	7.6422	300	Arebar,T : A	rea of rebar in ter	sile section	1						
	14	[15]	Class 3	SLS1_Fyy(Max)	Positive	7.6422	301	=	4909.00	(mm ²)							
	,,	174 (71	01 0,	CLC4 Ever(Min)	Desilion	7.0400	302	σ _{rebar} : In	ncrease in the ten	sile stress li	mit due to	the pre	sence of ad	ditional	I reinfor	cement	
							303	=	-5.85	(MPa)							
Apply Close			Tala				304	$\sigma_{t,limit}$: Fl	lexural tensile str	ess limit							
			ab	la de SLS Reserv	e Factor		305	$\sigma_{c,limit}$: Fl	lexural compress	ive stress lir	nit						
							306										
							307	Since									
Catagoría do Claco							308	σ _{c,max} ≤ 0	σ _{t,limit}	1. 1.	ОК						
Categoria de Clase							309	σ _{c,min} ≤ c	σ _{c,limit}	1.1	ОК						

18. Diseño de concreto reforzado según las especificaciones del IRS

- El diseño de hormigón armado según el IRS ya está disponible. Diseño de vigas, columnas y chequeo de vigas y columnas ahora se pueden realizar para IRS.
- Se pueden generar los reportes gráficos / detallados que incluyen las comprobaciones de estado límite último y estado límite de servicio según las especificaciones del IRS.

	No:160 Y 🖨 F	rint 🚑 Print All 🖫 Close 📮 Save	(29)	MIDAS/Text Editor - [RCC T girder IRS RC design.rcs] — 🗌 🗙	
			😁 (File Edit View Window Help	
Design > RC Design > IRS	1. Design Information			☞묘종집, ▤▯▯฿฿฿฿฿฿ ๛๛฿฿๏%๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
	Member Number : 160		00263	3 MIDAS/Civil - RC-Beam Design [IRS] Civil 2020	
	, Design Code : IRS Unit System : kN, m		00265 00265 00286	*.MIDAS/Civil - RC-BEAM Analysis/Design Program.	
	Beam Span : 0.472727 Section Property : mid (No :	, η = 30000, η w = 30000 κr a m 1)	00268 00269 00270	а *.PROJECT : 9 *.DESIGN CODE : IRS, *.UNIT SYSTEM : kN, п • *.MEMEER : Member Type = BEAM, MEMB = 160	
	2. Section Diagram		00271 00272 00273 00274 00276 00276	*.DESCRIPTION OF BEAM DATA (ISEC = 1) : mid 3 Section Type : Tee-Section (TEE) 4 Deam Length (Span) = 0.473 m. 5 Section Depth (Hc) = 1.450 m. 5 Section Width (Hc) = 0.300 m. 7 Width of Flare (Hc) = 2.800 m.	
			00278 00279 00280	B Depth of Flange (hf) = 0.250 m. Image: State Control of Contro of Control of Contro of Control of Control of Control of	
	TOP : 0.007520 mm2	No:187 G Print B Print All 📳 Close 🖬 Save	00281	2 🚰 File Edit View Window Help	- 6
	BOT:0.007896 m ⁴ 2		00283	〕 D ☞ 🖬 🖨 Q, 🖽 Ӽ ங ඬ 📕 🛤 🛱 🗠 ≅ 📕 🔺 % % % ↔ ۸ 🕂 🖽 🖉 ♥ 🖽 ⋿	1 🖷
	STIPRUPS : No BarDist	1. Design Condition	00285	5 00283 MIDAS/Civil - RC-Column Design [IRS] Civil 2	020
		Design Code IRS Unit System kN, m	00288 00287 00288 00287 00288	<pre>0 00204 0 00286 8 00280 *.MIDAS/Civil - RC-COLUMN Analysis/Design Program.</pre>	
	3. Bending Moment Cap	Member Number 187	00289	0 00288 *.PROJECT :	- 11
		Material Data fck = 30000, fy = 500000, fyw = 500000 KPa Column Height 4.75 m	N 00291	1 00289 *.DESIGN CODE : IRS, *.UNIT SYSTEM : kN, m 2 00270 *.MEMBER : Member Type = COLUMN, MEMB = 187, LCB = 36+, POS = J	- 11
	Negative Moment (M_Ed) (-) Load Combination No.	Section Property PIER (No : 12) Rebar Pattern Total Rebar Area Ast = 0.0113097 m ⁻² (Rhost = 0.0100)	00293 00294 00295	3 00271 4 00272 *.DESCRIFTION OF COLUMN DATA (ISEC = 12) : FIER 5 00273 Column Height (I) = 4.750 m.	
	Factored Strength (M_Rd)	0. Annihind Londo		6 00274 7 00275 Carbier Tarres - COLTE DOUND (CD)	- 11
	Check Ratio (M_Ed/M_Rd)	2. Applied Loads	00298	⁸ =00276 Section Diameter (D) = 1.200 m.	- 11
	Positive Moment (M_Ed) (+) Load Combination No.	Load Combination 30+ AI(J) Foint N_Ed = 2035.00 kN, M_Edy = 246.587, M_Edz = 1862.67,	M_Ed = 1878.92 kN-m 00300 00301	00277 Concrete Strength (fck) = 30000.000 KPa. 1 00278 Main Rebar Strength (fyw) = 500000.000 KPa. 1 00279 Ties/Spirals Strength (fyw) = 500000.000 KPa.	
	Factored Strength (M_Rd)	3. Axial Forces and Moments Capacity Check	00303	00280 Modulus of Elasticity (Es) = 20000000.000 KPa.	- 11
	Check Ratio (M_Ed/M_Rd)	Concentric Max. Axial Load N_Rdmax = 39244.8 kN Axial Load Ratio N. Ed/N. Rd = 2035.00 / 4765.59 = 0.427	<1000 OK	*.REINFORCEMENT PATTERN : 00283 Concrete Cover to C.O.R. (do) = 0.065 m.	- 11
		Moment Ratio M_Edy/M_Rdy = 246.587 / 578.278 = 0.426	< 1.000 O.K	00284 Total Rebar Area = 0.01131 m^2.	- 11
		M_Edz/M_Rdz = 1862.67 / 4361.91 = 0.427	< 1.000 O.K	00288 *.Ties : Failure	
		M_Ed/M_Rd = 1878.92 / 4400.07 = 0.427	< 1.000 O.K	00287	- 11
Concrete Design Code	×	4. P-M Interaction Diagram		00289 [[[*]]] CALCULATE SLENDERNESS RATIOS, MACHIFIED FORCES/MOMENTS. 00290	- 11
Design Code : IRS ~		N(kV_0000 3520 NA#5245Deg, N_Rd(kN)	M_Rd(kN-m)	00282 (). Factored forces/moments caused by unit load case. Unit : kN., m. 00283 *.Load combination ID = 364 00294	
		39244.78 39244.78 35689.30	1608.83	00295 Load Case N_Ed_max Myi Myj Mzi Mz	3
Apply Special Provisions for Seismic Design		25750 30608.49	3591.27	00298 DL 2070.96 -1.03 -5.29 0.00 0.0	0
Moment Redistribution Factor for Beam :	1	21000 25788.21	4874.66	00298 LL -6.43 0.00 0.00 1120.50 1109.3 00299 DL+LL 2064.53 -1.03 -5.29 1120.50 1109.3	3
		19250 21810.48 18652.82	5931.38	00300 Others -29.52 48.47 251.88 304.79 753.3	4
Torsion Design		6750 16185.09	6013.27	00302 DL+LL+Others 2035.00 47.44 246.59 1425.29 1862.6	7
ОК	Close	2000 0 -2750	5952.35 5744.15 5280.91	00303	
Opción de códogp de Diseño Pc	or IRS	Reporte gráfico para diseño de vigas y	columnas	Reporte detallado para diseño de vigas y columnas	

19. Informe de diseño polaco

• Informe de diseño de Polonia aplicado en viga cajón y compuesta presforzada, acero compuesta por Eurocode

Numer elementu 1075 Postion Information 1 1.Przypadek wymiarowania 1 1.1 Prarmetty wymiarowania Vegotow dla SGU * Współczynnik częśchowe dla SGU (EN 1992-1-1/2004, 2.4.2.4) Przypadk wymiarowania Y ₂ dla betoru 1.100 1.500 Stały i zmienny 1.500 1.500 1.150 Vispółczynnik częśchowe dla SGU (dla wytrzymałości na ściskanie) agi = 0.850 (dla wytrzymałości na ściskanie) agi = 1.000 (dla wytrzymałości na ściskanie) agi = 1.000 (Dzwigar) Przekr. zast(Po ścisk.) (Dzwigar + Pyta) 1.2 Informacje o przeknju (Dzwigar) Informacje o przeknju 12165465 603 y ₄ (mm ³) 515465 603 962335 200 y ₄ (mm ³) 0.65714 1137.354 y ₄ (mm ³) 0.65714 1137.354 y ₄ (mm ³) 0.066.714 139.05976.1611 Z ₄ (mm ³) 1056127262.797 13 Z ₄ (mm ³) 109305140.655 197447956.212 <th></th> <th></th> <th></th> <th></th> <th>aleet the lenguage for print</th> <th></th>					aleet the lenguage for print	
Position Information I 1.Przypadek wymiarowania 1.1 Parametry wymiarowania - Współczynnik częściowe dla SGU (EN 1992-11-2004, 2.4.2.4) Przypadek wymiarowania y, dla betonu y, dla stali zbrojenioweji y, dla stali spręzająceji Stały i zmiemy 1.500 1.150 1.150 Wyjetkowy 1.200 1.000 1.000 - Współczynnik dugoterminowych wpływów na wytzymałość na ściskanie i zginanie. doc = 0.850 (dla wytrzymałości na fozciaganie) 1.2 Informacje o przekroju Przekr. zast(cięj żcry) Przekr. zast(cięj żcry) Przekr. zast(cięj żcry) Przekr. zast(cięj żcry) 1.2 Informacje o przekroju (Dżwigari Pryta) 1.2636 1.2 Informacje o przekroju 1.2 Informacje o przekroju 1.2 Informacje o przekroju 1.2 mm² .	Numer elementu	1075			elect the language for prin	·
1.Przypadek wymiarowania 0K Crędish 1.1 Parametry wymiarowania y _a dla betonu (EN 1992-11.2004.24.2.4) Przypadki wymiarowania y _a dla betonu (V, dla stali zbrojeniowej y _a dla dla wytrzymałości na fozciąganie) 1.2 Informacje o przekroju (Uźwigar, Phyta) A (mm [*]) 515465.603 952336.200 I _y (mm [*]) 13716210682.118 22457027776.134 137.2636 Y ₂₆ (mm [*]) 543.286 212.636 139.46047196.375 1056127262.797 Z ₄ (mm [*]) 19305140.655 197447956.212 197447956.212	Position Information	1			Language : English	-
1.1 Parametry wymiarowania CP-0151 1.1 Parametry wymiarowania y, dla betonu y, dla stali zbrojeniowej y, dla stali spręzającej Stały i zmienny 1.500 1.150 1.160 Wygłtowy 1.200 1.000 1.000 - Współczynnik dzge, egt. współczynnik długoterninowych wpływów na wytzymałości na ściskanie i zginanie. a.g. a.g. a.g. = 0.850 (dla wytrzymałości na ściskanie) a.g. a.g. = 1.000 (dla wytrzymałości na ściskanie) a.g. y.g. (mm²) 515465.603 962336.200 a.g. y.g. (mm²) - 212.636 a.g. y.g. (mm²) - 120.636 a.g. y					OK Czech	
1.1 Parametry wymiarowania Vs 0dia stali szęściowe dla SGU (EN 1992-11-2004, 2.4.2.4) Przypadki wymiarowania Vs. dla stali szbrojenowej (vs. dla stali sprężające) Stały i zmienny 1.500 1.150 1.150 Stały i zmienny 1.200 1.000 1.000 1.000 - Współczynnik dogo terminowych wpływów na wytzymałość na ściskanie i zginanie. a.co. 0.860 (dla wytrzymałości na ściskanie)	1.Przypadek wymiarowa	inia			Polish	
$\begin{array}{ c c } \hline (EN 1992/1-1/2004, 24.24) \\ \hline (U) \\ \hline (U) \\ \hline (U) \\ \hline (U) \\ (U) \\ \hline (U) \\ (U)$	1.1 Parametry wymiarov	vania				
Hzypadk wymarowana y _c dla betoru y _c dla stali zbrjenowej y _c dla stali strjężającej Stały zmienny 1.50 1.150 1.150 Wyjątkowy 1.200 1.000 1.000 - Współczynnik d _{ice} , a _{ct} : współczynnik długoterminowych wpływów na wytzymałość na ściskanie i zginanie. a _{cc} = 0.850 (dla wytrzymałości na forzciąganie) 12 Informacje o przekroju Przekr. zast(cięg., zbroj.) Przekr. zast(cięg., zbroj.) (Dźwigar + Płyta) A (mm [*]) 0.51465.603 952336.200 1.4 J.y (mm [*]) 137162101892.318 224670272776.134 1.4 Yst. (mm [*]) 512.636 1.9 1.2 J.y. (mm [*]) 615465.603 952336.200 1.9 J.y. (mm [*]) 1.37162101892.318 224670272776.134 1.9 Yst. (mm [*]) - 212.636 1.9 1.9 Yst. (mm [*]) - 1.056127262.797 1.2 1.066121262.797 1.2 Zat (mm [*]) 1.056127262.797 2.2 1.056127262.797 2.2 1.056127262.797 2.2 1.056127262.797 2.2 1.0561	- Współczynniki czę	ściowe dla SGU		(EN 1992-1-1:2	004, 2.4.2.4)	
Stary 1 zmienny 1.300 1.150 1.150 Wyjątkowy 1.200 1.000 1.000 - Współczynnik a _{ca} , a _{ci} : współczymnik długoterminowych wpływów na wytzymałość na ściskanie i zginanie. a _{ca} = 0.850 (dla wytrzymałości na rozciąganie) 1.2 Informacje o przekroju Przekr. zast(cieg zbroj.) (Dźwigar) Przekr. zast(cieg zbroj.) (Dźwigar) Przekr. zast (cieg zbroj.) (Dźwigar) A (mm*) 515465.603 95236.200 1.154 Jy (mm*) 515465.603 95236.200 Jy (mm*) - 212.636 ys (mm*) - 212.636 ys (mm*) - 1056127262.797 Zat (mm*) - 1056127262.797 Zat (mm*) 189305140.655 197447956.212	Przypadki wymiarov	vania γ _o dla beto	onu γ _s dla stali	zbrojeniowej γ _s dla	stali sprężającej	
• Wygładowy 1.200 1.000 1.000 • Współczynnik dzgo, dz, współczynnik długoterminowych wpływów na wytzymałość na ściskanie i zginanie. 0.850 (dla wytzymałości na ściskanie) 0. dz, i = 1.000 (dla wytzymałości na rozciąganie) 12. Informacje o przekroju Przekr, zast(cięg, zbroj.) Przekr, zast(cięg, zbroj.) 12. Informacje o przekroju Przekr, zast(cięg, zbroj.) Przekr, zast(cięg, zbroj.) Przekr, zast(cięg, zbroj.) A (mm²) 515465.603 95236.200 14 Jyst (mm) - 512.636 122.536 Jyst (mm) - 212.636 125.536 Jyst (mm) - 438069976.161 2.24.57027267.197 Z.4 (mm²) 46047196.375 1056127262.797 2.2 Z.4 (mm²) - 19305140.655 197447956.212	Stary I zmienny		1.500	1.150	1.150	
• Współczynnik d _{co} , a _{ct} : współczynnik długoterminowych wpływów na wytzymałość na ściskanie i zginanie. q _{co} : = 0.850 (dla wytzymałości na ściskanie) a _{ct} : = 1.000 (dla wytzymałości na rozciąganie) 12 Informacje o przekroju Przekr. zast(cięg., zbroj.) Przekr. zast(cięg., zbroj.) (Dźwigar) (Dźwigar) (Dźwigar + Płyta) A (mm ²) 137162101892.318 224570272776.134 ys: (mm) - 512.636 ys: (mm) - 1216.536 ys: (mm) - 1212.636 ys: (mm) - 137.662.112.636 ys: (mm) - 1306.714 1307.664 Zab (mm ³) - 1056127262.797 - Zab (mm ³) - 1056127262.797 - Zab (mm ³) - 1056127262.797 - Zab (mm ³) - 1056127262.797 - - Zab (mm ³) - 1056127262.797 - - -	vvyjątkowy		1.200	1.000	1.000	
Image: and the second secon	- Współczynnik a	a współczynnik długoterr	ninowych wpływów na	a wytzymałość na ści	skanie i zginanie	
act = 1.000 (dla wytrzymałości na rozciąganie) 1.2 Informacje o przekroju Przekr. zast(cięg., zbroj.) Przekr. zast (Cięg., zbroj.) A (mm*) 515465.603 952336.200 I_y (mm*) 137162101892.318 224570272776.134 ysa (mm) - 212.636 ysa (mm) - 212.636 ysa (mm*) 543.286 212.636 ysa (mm*) - 212.636 ysa (mm*) - 43806976.161 Zast (mm*) - 43806976.161 Zast (mm*) - 1056127262.797 Zast (mm*) 183305140.655 197447956.212	$\alpha_{cc} = 0$	850 (dla wytrzymałości i	na ściskanie)			
1.2 Informacje o przekroju Przekr. zast(cięg. zbroj.) Przekr. zast(cięg. zbroj.) Przekr. zast(cięg. zbroj.) A (mm²) 515465.603 952336.200 Jy (mm²) 137162101892.318 224570272775.134 yst (mm) - 212.636 yst (mm) - 212.636 yst (mm²) - 438069976.161 Zst (mm²) - 1056127262.797 Zi (mm²) 189305140.655 197447956.212	α _{ct} = 1.	000 (dla wytrzymałości i	na rozciąganie)			
1.2 Informacje o przekroju Przekr. zast(cieg. , zbroj.)						
Informacje o przekroju Przekroju (Dźwigar) Przekroju (Dźwigar) Przekroju (Dźwigar) A (mm²) 515465.603 952336.200 ly (mm²) 137162101892.318 224570272776.134 y _{st} (mm) - 512.636 y _{st} (mm) - 212.636 y _{st} (mm) - 43009976.161 Z _{st} (mm²) - 1056127262.797	1.2 Informacje o przekro	iju				
preency (c2/mg/t) (c2/mg/t) (c2/mg/t) A (mm*) 515465.603 (2000) (1) I ymm) 137162101892.318 224570272776.134 (1) Yst (mm) - 512.636 (1) Yst (mm) - 212.636 (1) Ys (mm) 643.286 212.636 (1) Ys (mm*) 806.714 1137.364 (2) Zst (mm*) - 43806976.611 (2) Zst (mm*) - 1056127262.797 (2) Zst (mm*) 189305140.655 197447956.212 (1)	Informacje o	Przekr. zast(cięg., zbroj.)	Przekr. zas (Po	ścisk.)		
1 1 313403.003 322337.200 1 1 317162101892.318 224570272776.134 yss (mm) - 512.636 yss (mm) - 212.636 ys (mm) 543.266 212.636 ys (mm) 806.714 1137.364 Zat (mm ³) - 1056127262.797 Zat (mm ³) 46047196.375 1056127262.797 Zat (mm ³) 189305140.655 197447956.212		(D2wigar)	(Dzwigar + Pr	2336.200		
yst (mm) - 1212.636 yst (mm) - 1212.636 yst (mm) - 1212.636 yst (mm) 806.714 1137.364 Zst (mm ³) - 438069976.161 Zst (mm ³) - 1056127262.797 Zi (mm ³) 46047196.375 1056127262.797 Zs (mm ³) 189305140.655 197447956.212	(mm ⁴)	137162101892 318	224570272	2776 134		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{st} (mm)	-		512.636		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y _{sb} (mm)	-		212.636		
y _b (mm) 806.714 1137.364 Z _{st} (mm ³) - 438069976.161 Z _{sb} (mm ³) - 1056127262.797 Z _t (mm ³) 46047196.375 1056127262.797 Z _b (mm ³) 46047196.275 197447956.212	yt (mm)	543.286	5	212.636		
Z _{st} (mm ³) - 438099976.161 Z _b (mm ³) - 1056127262.797 Z _c (mm ³) 46047196.375 1056127262.797 Z _b (mm ³) 189305140.655 197447956.212	y _b (mm)	806.714	1	1137.364		
Zab (mm ²) - 105612/262.797 Zi (mm ²) 46047196.375 1056127262.797 Zb (mm ²) 189305140.655 197447956.212	Z _{st} (mm ³)	-	438069	9976.161		
Z ₆ (mm ³) 189305140.655 197447956.212	Z _{sb} (mm ³)	-	105612/	(262.797		
	Z _t (mm ^o)	46047196.375	1056127	262.797		
	26 (mm)	105305140.055	137447	350.212		
1.3 Dane materialowe	1.3 Dane materialowe					

lumor olomo	ntu	2							Select the la	nguage for print,
ołożenie ele	mentu		_						Language :	English
									OK	English Czech
1 Przypade	ek wymiarow	ania								-Polish
1.1 Param	netry do wymi	arowania								
■ Współo	zynniki częśo	iowe								
γ _C dla bet	onu		0.60	γ _V dla sv	orzni z łbem	ı			1.10	
γ _S dla sta	li zbrojeniowe	i	0.70	γ _{Ff} dla ró	wnow. zakre	esu zmi	ienności na	prężeń o st	0.90	
γ _{M0} dla st	ali konstrukcy	jn	0.80	γ _{Mf} dla w	ytrzymałośc	i zmęc	zeniowej		0.80	
γ _{M1} dla st	ali konstrukcy	jr	0.90	γ _{Mf,s} dla	wytrzymałoś	ci zmę	czeniowej p	orzy ścianiu	0.70	
1.2 Dave										
Stal ko	nateriałowe									
f. =	440.000	MPa	F	-	2100	000 000	MPa			
isk -	40.000	Nii a	Ls		2100		IVII a			
Beton										
f _{ck} =	40.000	MPa	Ecm	, =	350	000.000	MPa			
Zbrojen	ie									
f _{yk} =	400.000	MPa	Er	=	2100	000.00	MPa			
1.3 Inform	acje o przekro	ju								
		-			Bs					
		1						·		
	4	10 m 2 S	140	ionia.		985		-		
		1.2.1.1.4	1.1.1			aja ta j	1	i —		
					Ric		d			
				-		-	Ð			
							NA			
							pa			
							ę			
							5			
						_				
				1			1			
				L	Dft	-				